Skip to main content
Log in

Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications

  • Original paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal chemistry across the garnet series is examined, and several systematic trends are reported. The crystal structure of three different cubic phases intergrown in a birefringent near end-member andradite from Namibia was refined by the Rietveld method, space group \( Ia\bar{3}d, \) and monochromatic synchrotron high-resolution powder X-ray diffraction data. Electron microprobe results indicate three phases with distinct compositions. The sample is birefringent, indicating that it is not cubic when observed optically. The reduced χ 2 and overall R (F 2) Rietveld refinement values are 1.655 and 0.0284, respectively, so the multi-phase refinement is excellent. The composition, weight %, unit-cell parameter (Å), distances (Å), and site-occupancy factors (sofs) are as follows: phase-1, Adr99, 88.5(1)  %, a = 12.06259(1), average 〈Ca–O〉 = 2.4310, Fe–O = 2.0189(4), Si–O = 1.6490(4) Å, Ca(sof) = 0.948(1), Fe(sof) = 0.934(1), and Si(sof) = 0.940(1). For phase-2: Adr71Grs28, 7.1(1) %, a = 12.00361(5), average 〈Ca–O〉 = 2.440, Fe–O = 1.979(3), Si–O = 1.641(3) Å, Ca(sof) = 0.913(5), Fe(sof) = 0.767(4), and Si(sof) = 0.932(5). For phase-3: Grs79Adr17, 4.4(1) %, a = 11.89719(4), average 〈Ca–O〉 = 2.404, Al–O = 1.935(4), Si–O = 1.667(3) Å, Ca(sof) = 0.944(6), Al(sof) = 1.069(7), and Si(sof) = 0.887(5). The dominant phase-1 (89 %; Adr99) is nearly end-member andradite, Ca3Fe 3+2 Si3O12, which contains no cation order in the Ca(X) or Fe(Y) sites. The intergrowth of the three cubic phases causes considerable strain in the minor phases-2 and phases-3 that arise from different structural parameters and gives rise to strain-induced birefringence. For comparison, the results for an isotropic, single-phase, grossular–andradite garnet (Grs76Adr21) are also presented. The strain in the minor phases is about 3–5 times more than the unstrained dominant phase-1, or the unstrained single-phase grossular–andradite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamo I, Gatta GD, Rotitoti N, Diella V, Pavese A (2010) Green andradite stones: gemological and mineralogical characterisation. Eur J Mineral 23:91–100

    Article  Google Scholar 

  • Agrosì G, Schingaro E, Pedrazzi G, Scandale E, Scordari R (2002) A crystal chemical insight into sector zoning of a titanian andradite (‘melanite’) crystal. Eur J Mineral 14:785–794

    Article  Google Scholar 

  • Akizuki M (1984) Origin of optical variations in grossular-andradite garnet. Am Mineral 66:403–409

    Google Scholar 

  • Akizuki M (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. Am Mineral 74:859–864

    Google Scholar 

  • Allen FM, Buseck PR (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am Mineral 73:568–584

    Google Scholar 

  • Angel R, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Mineral 74:509–512

    Google Scholar 

  • Antao SM (2013) The mystery of birefringent garnet: is the symmetry lower than cubic? Powder Diffr. doi:10.1017/S0885715613000523

  • Antao SM, Hassan I (2010) A two-phase intergrowth of genthelvite from Mont Saint-Hilaire, Quebec. Can Mineral 48:1217–1223

    Article  Google Scholar 

  • Antao SM, Klincker AM (2013) Origin of birefringence in andradite from Arizona, Madagascar, and Iran. Phys Chem Minerals 40:575–586

    Google Scholar 

  • Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509

    Article  Google Scholar 

  • Antao SM, Klincker AM, Round SA (2013a) Some garnets are cubic and birefringent, why?. American Crystallographic Association, New York

    Google Scholar 

  • Antao SM, Klincker AM, Round SA (2013b) Origin of birefringence in common silicate garnet: intergrowth of different cubic phases. American Geophysical Union, Washington

    Google Scholar 

  • Armbruster T (1995) Structure refinement of hydrous andradite, Ca3Fe1.54Mn0.02Al0.26(SiO4)1.65(O4H4)1.35, from the Wessels mine, Kalahari manganese field, South Africa. Eur J Mineral 7:1221–1225

    Google Scholar 

  • Armbruster T, Geiger CA (1993) Andradite crystal chemistry, dynamic x-site disorder and structural strain in silicate garnets. Eur J Mineral 5:59–71

    Google Scholar 

  • Armbruster T, Lager GA (1989) Oxygen disorder and the hydrogen position in garnet-hydrogarnet solid-solutions. Eur J Mineral 1:363–369

    Google Scholar 

  • Armbruster T, Geiger CA, Lager GA (1992) Single crystal X-ray structure study of synthetic pyrope-almandine garnets at 100 and 293 K. Am Mineral 77:518–527

    Google Scholar 

  • Armbruster T, Birrer J, Libowitzky E, Beran A (1998) Crystal chemistry of Ti-bearing andradites. Eur J Mineral 10:907–921

    Google Scholar 

  • Badar MA, Akizuki M, Hussain S (2010) Optical anomaly in iridescent andradite from the Sierra Madre mountains, Sonora, Mexico. Can Mineral 48:1195–1203

    Article  Google Scholar 

  • Badar MA, Niaz S, Hussain S, Akizuki M (2013) Lamellar texture and optical anomaly in andradite from the Kamaishi mine, Japan. Eur J Mineral 25:53–60

    Article  Google Scholar 

  • Baerlocher C, Hepp A, Meier WM (1978) DLS-76: a program for the simulation of crystal structures by geometric refinement. Institute of Crystallography and Petrography—ETH, Zurich, p 116

    Google Scholar 

  • Baikie T, Schreyer MK, Wong CL, Pramana SS, Klooster WT, Ferraris C, McIntyre GJ, White TJ (2012) A multi-domain gem-grade Brazilian apatite. Am Mineral 97:1574–1581

    Article  Google Scholar 

  • Basso R, Dellagiusta A, Zefiro L (1981) A crystal chemical study of a Ti-containing hydrogarnet. Neues Jahrbuch Fur Mineralogie-Monatshefte 5:230–236

    Google Scholar 

  • Basso R, Dellagiusta A, Zefiro L (1983) Crystal-structure refinement of plazolite—a highly hydrated hatural hydrogrossular. Neues Jahrbuch Fur Mineralogie-Monatshefte 6:251–258

    Google Scholar 

  • Basso R, Cimmino F, Messiga B (1984a) Crystal chemical and petrological study of hydrogarnets from a Fe-gabbro metarodingite (Gruppo Di Voltri, Western Liguria, Italy). Neues Jahrbuch Fur Mineralogie-Abhandlungen 150:247–258

    Google Scholar 

  • Basso R, Cimmino F, Messiga B (1984b) Crystal-chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri-Massif (Western Liguria, Italy). Neues Jahrbuch Fur Mineralogie-Abhandlungen 148:246–258

    Google Scholar 

  • Brauns R (1891) Die optischen Anomalien der Kristalle. Preisschr. Jablonowski Ges, Leipzig

    Google Scholar 

  • Chakhmouradian AR, McCammon CA (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Phys Chem Miner 32:277–289

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Wiley, New York

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Ferro O, Galli E, Papp G, Quartieri S, Szakall S, Vezzalini G (2003) A new occurrence of katoite and re-examination of the hydrogrossular group. Eur J Mineral 15:419–426

    Article  Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya LV, Shtukenberg AG, Bannova II, Skalkina YA (2007) Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al, Fe)2(SiO4)3. Struct Chem 18:493–503

    Article  Google Scholar 

  • Geiger CA, Armbruster T (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: structural dynamic and thermodynamic properties. Am Mineral 82:740–747

    Google Scholar 

  • Geiger CA, Armbruster T, Lager GA, Jiang K, Lottermoser W, Amthauer G (1992) A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol’danskii-Karyagin effect. Phys Chem Miner 19:121–126

    Article  Google Scholar 

  • Gramaccioli CM, Pilati T, Demartin F (2002) Atomic displacement parameters for spessartine Mn3Al2Si3O12 and their lattice-dynamical interpretation. Acta Crystallogr A B58:965–969

    Google Scholar 

  • Griffen DT, Hatch DM, Phillips WR, Kulaksiz S (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet. Am Mineral 77:399–406

    Google Scholar 

  • Jamtveit B (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: nonlinear dynamics in regions of immiscibility. Am Mineral 76:1319–1327

    Google Scholar 

  • Kingma KJ, Downs JW (1989) Crystal-structure analysis of a birefringent andradite. Am Mineral 74:1307–1316

    Google Scholar 

  • Kitamura K, Komatsu H (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al, Fe)5O12. Kristallographie und Technik 13:811–816

    Article  Google Scholar 

  • Lager GA, Rossman GR, Rotella FJ, Schultz AJ (1987a) Neutron-diffraction structure of a low-water grossular at 20 K. Am Mineral 72:766–768

    Google Scholar 

  • Lager GA, Armbruster T, Faber J (1987b) Neutron and X-ray-diffraction study of hydrogarnet Ca3Al2(O4H4)3. Am Mineral 72:756–765

    Google Scholar 

  • Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory report, LAUR 86-748

  • Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM, Jiao X, Toby BH (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15:427–432

    Article  Google Scholar 

  • Locock AJ (2008) An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

    Article  Google Scholar 

  • Munno R, Rossi G, Tadini C (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. Am Mineral 65:188–191

    Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ito E (1999a) Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am Mineral 84:199–202

    Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999b) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3. Am Mineral 84:1135–1143

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:1769–1780

    Google Scholar 

  • Novak GA, Meyer HOA (1970) Refinement of the crystal structure of a chrome pyrope garnet: an inclusion in natural diamond. Am Mineral 55:2124–2127

    Google Scholar 

  • Peterson RC, Locock AJ, Luth RW (1995) Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite. Can Mineral 33:627–631

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Sacerdoti M, Passaglia E (1985) The crystal structure of katoite and implications within the hydrogrossular group of minerals. Bull Mineral 108:1–8

    Google Scholar 

  • Schingaro E, Scordari F, Capitanio F, Parodi G, Smith DC, Mottana A (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. Eur J Mineral 13:749–759

    Article  Google Scholar 

  • Schingaro E, Scordari F, Pedrazzi G, Malitesta C (2004) Ti and Fe speciation by X-ray photoelectron spectroscopy (XPS) and mössbauer spectroscopy for a full crystal chemical characterisation of Ti-garnets from Colli Albani (Italy). Anal Chim 94:185–196

    Article  Google Scholar 

  • Scordari F, Schingaro E, Pedrazzi G (1999) Crystal chemistry of melanites from Mt. Vulture (Southern Italy). Eur J Mineral 11:855–869

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    Article  Google Scholar 

  • Shtukenberg AG, Punin YO, Frank-Kamenetskaya OV, Kovalev OG, Sokolov PB (2001) On the origin of anomalous birefringence in grandite garnets. Mineral Mag 65:445–459

    Article  Google Scholar 

  • Shtukenberg AG, Popov DY, Punin YO (2005) Growth ordering and anomalous birefringence in ugrandite garnets. Mineral Mag 69:537–550

    Article  Google Scholar 

  • Smyth JR, Madel RE, McCormick TC, Munoz JL, Rossman GR (1990) Crystal-structure refinement of a F-bearing spessartine garnet. Am Mineral 75:314–318

    Google Scholar 

  • Takéuchi Y, Haga N, Umizu S, Sato G (1982) The derivative structure of silicate garnets in grandite. Z Kristallogr 158:53–99

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79:085105

    Article  Google Scholar 

  • Weber HP, Virgo D, Huggins FE (1975) A neutron-diffraction and 57Fe Mössbauer study of a synthetic Ti-rich garnet. Carnegie Inst Wash Year Book 74:575–579

    Google Scholar 

  • Wildner M, Andrut M (2001) The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures. Am Miner 86:1231–1251

    Google Scholar 

Download references

Acknowledgments

The anonymous reviewers and the editor, A. Kavner, are thanked for useful comments that helped to improve this manuscript. R. Marr is thanked for help with the EMPA data collection. The HRPXRD data were collected at the X-ray Operations and Research beamline 11-BM, Advanced Photon Source (APS), Argonne National Laboratory (ANL). Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported with a NSERC Discovery Grant and an Alberta Ingenuity Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sytle M. Antao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antao, S.M. Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications. Phys Chem Minerals 40, 705–716 (2013). https://doi.org/10.1007/s00269-013-0606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0606-4

Keywords

Navigation