Skip to main content
Log in

Reproductive performance of a tropical apex predator in an unpredictable habitat

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Variation in life history traits is directly linked to individual fitness. This interplay is complicated by environmental perturbations in an unpredictable habitat. To maximise fitness, individuals react to environmental changes by reallocating resources between maintenance, growth and reproduction. Disentangling these factors is complicated as traits are interlinked by trade-offs between current reproduction and future survival and reproduction. This study provides first estimates of life history traits and trade-offs of a tropical apex predator, the Galapagos sea lion (Zalophus wollebaeki), in an unpredictable habitat, the Galapagos archipelago. Thirteen years of individual data on birth mass, early growth and offspring, and environmental data allowed the examination of factors influencing reproductive performance of adult females and calculation of pupping rates. Females became primiparous between ages 4 and 9. Neither oceanographic nor body condition in the females’ first year of life influenced age at primiparity. Age at primiparity had no effect on a female’s birth rate, on average one pup every 2 years. Sex of a pup did not influence the subsequent inter-birth interval, but first-year pup survival lengthened it. Until age 6, females showed lower birth rate (< 0.40). Fecundity was higher between age 6 and 14 (birth rate 0.40–0.48). We could not detect an influence of inter-annually differing oceanographic conditions on pupping rates. Female Galapagos sea lions appear to deal with variation in early-life history traits and environmental unpredictability by a low but stable reproductive output modified only by the trade-off between current and future reproduction.

Significance statement

Life history traits and trade-offs have been examined in many species in temperate regions and in seasonal but predictable tropical habitats. However, they have rarely been investigated in long-lived species in tropical but unpredictable habitats, where the interplay between life history traits, individual fitness and population demography may be more complex. Our long-term dataset for Galapagos sea lion females, a tropical apex predator, shows that the trade-off between current and future reproduction figures prominently in their life history. However, they produce a low, but stable reproductive output largely unaffected by variation in early life history traits and largely independent of environmental unpredictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albon SD, Clutton-Brock TH, Guinness FE (1987) Early development and population-dynamics in red deer. 2. Density-independent effects and cohort variation. J Anim Ecol 56:69–81

    Article  Google Scholar 

  • Ancona S, Sánchez-Colón S, Rodríguez C, Drummond H (2011) El Niño in the warm tropics: local sea temperature predicts breeding parameters and growth of blue-footed boobies. J Anim Ecol 80:799–808

    Article  PubMed  Google Scholar 

  • Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildlife Manage 66:912–918

    Article  Google Scholar 

  • Arnbom T, Fedak MA, Rothery P (1994) Offspring sex-ratio in relation to female size in southern elephant seals, Mirounga-Leonina. Behav Ecol Sociobiol 35:373–378

    Article  Google Scholar 

  • Arntz A, Pearcy WG, Trillmich F (1991) Biological consequences of the 1982–83 El Niño in the Eastern Pacific. In: Trillmich F, Ono KA (eds) Pinnipeds and El Niño responses to environmental stress. Springer, Berlin, pp 22–42

    Chapter  Google Scholar 

  • Atkinson S (1997) Reproductive biology of seals. Rev Reprod 2:175–194

    Article  PubMed  CAS  Google Scholar 

  • Banghart M (2015) pbnm: parametric bootstrap test of nested models. Social Science Computing Cooperative, University of Wisconsin

  • Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beauplet G, Barbraud C, Dabin W, Kussener C, Guinet C (2006) Age-specific survival and reproductive performances in fur seals: evidence of senescence and individual quality. Oikos 112:430–441

    Article  Google Scholar 

  • Bodkin JL, Mulcahy D, Lensink CJ (1993) Age-specific reproduction in female sea otters (Enhydra-Lutris) from South-Central Alaska—analysis of reproductive tracts. Can J Zool 71:1811–1815

    Article  Google Scholar 

  • Boltnev AI, York AE (2001) Maternal investment in northern fur seals (Callorhinus ursinus): interrelationships among mothers’ age, size, parturition date, offspring size and sex ratios. J Zool 254:219–228

    Article  Google Scholar 

  • Botero CA, Weissing FJ, Wright J, Rubenstein DR (2015) Evolutionary tipping points in the capacity to adapt to environmental change. P Natl Acad Sci USA 112:184–189

    Article  CAS  Google Scholar 

  • Bowen WD, den Heyer CE, McMillan JI, Iverson SJ (2015) Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous gray seals. Ecol Evol 5:1412–1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyd IL (1984) The relationship between body condition and the timing of implantation in pregnant grey seals (Halichoerus-Grypus). J Zool 203:113–123

    Article  Google Scholar 

  • Boyd IL (1996) Individual variation in the duration of pregnancy and birth date in Antarctic fur seals: the role of environment, age, and sex of fetus. J Mammal 77:124–133

    Article  Google Scholar 

  • Boyd IL (2000) State-dependent fertility in pinnipeds: contrasting capital and income breeders. Funct Ecol 14:623–630

    Article  Google Scholar 

  • Boyd IL, Croxall JP, Lunn NJ, Reid K (1995) Population demography of Antarctic fur seals—the costs of reproduction and implications for life-histories. J Anim Ecol 64:505–518

    Article  Google Scholar 

  • Briga M, Koetsier E, Boonekamp JJ, Jimeno B, Verhulst S (2017) Food availability affects adult survival trajectories depending on early developmental conditions. Proc R Soc B 284:20162287

    Article  PubMed  Google Scholar 

  • Broderick AC, Glen F, Godley BJ, Hays GC (2003) Variation in reproductive output of marine turtles. J Exp Mar Biol Ecol 288:95–109

    Article  Google Scholar 

  • Bronson FH (1985) Mammalian reproduction—an ecological perspective. Biol Reprod 32:1–26

    Article  PubMed  CAS  Google Scholar 

  • Burness GP, McClelland GB, Wardrop SL, Hochachka PW (2000) Effect of brood size manipulation on offspring physiology: an experiment with passerine birds. J Exp Biol 203:3513–3520

    PubMed  CAS  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation. Sinauer Associates, Sunderland, MA

  • Caswell H, Hastings A (1980) Fecundity, developmental time, and population-growth rate—an analytical solution. Theor Popul Biol 17:71–79

    Article  PubMed  CAS  Google Scholar 

  • Clutton-Brock TH, Guinness FE, Albon SD (1983) The costs of reproduction to red deer hinds. J Anim Ecol 52:367–383

    Article  Google Scholar 

  • Clutton-Brock TH, Price OF, Albon SD, Jewell PA (1991) Persistent instability and population regulation in Soay sheep. J Anim Ecol 60:593–608

    Article  Google Scholar 

  • Clutton-Brock TH, Scott D (1991) The evolution of parental care. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Article  PubMed  CAS  Google Scholar 

  • Costa DP (1991) Reproductive and foraging energetics of pinnipeds: implications for life history patterns. In: Renouf D (ed) The behaviour of pinnipeds. Chapman and Hall, London, pp 300–338

    Chapter  Google Scholar 

  • Dabin W, Beauplet G, Crespo EA, Guinet C (2004) Age structure, growth, and demographic parameters in breeding-age female subantarctic fur seals, Arctocephalus tropicalis. Can J Zool 82:1043–1050

    Article  Google Scholar 

  • Day T, Rowe L (2002) Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. Am Nat 159:338–350

    PubMed  Google Scholar 

  • DeLong RL, Antonelis GA (1991) Impact of the 1982–1983 El Niño on the northern fur seal population at San Miguel Island, California. In: Trillmich F, Ono KA (eds) Pinnipeds and El Niño: responses to environmental stress. Springer, Berlin, pp 75–83

    Chapter  Google Scholar 

  • Denkinger J, Vinueza L (2014) The Galapagos marine reserve: a dynamic social-ecological system. Springer International Publishing, Cham

  • Descamps S, Boutin S, Berteaux D, McAdam AG, Gaillard JM (2008) Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. J Anim Ecol 77:305–314

    Article  PubMed  Google Scholar 

  • Dewar RE, Richard AF (2007) Evolution in the hypervariable environment of Madagascar. P Natl Acad Sci USA 104:13723–13727

    Article  CAS  Google Scholar 

  • Evans PGH, Stirling I (2001) Life history strategies of marine mammals. In: Evans PGH, Raga JA (eds) Marine mammals: biology and conservation. Kluwer Academic/Plenum Publishers, New York, pp 7–62

    Chapter  Google Scholar 

  • Festa-Bianchet M, Jorgenson JT, Lucherini M, Wishart WD (1995) Life-history consequences of variation in age of primiparity in bighorn ewes. Ecology 76:871–881

    Article  Google Scholar 

  • Forcada J, Trathan PN, Reid K, Murphy EJ (2005) The effects of global climate variability in pup production of Antarctic fur seals. Ecology 86:2408–2417

    Article  Google Scholar 

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Fowler CW (1981) Density dependence as related to life-history strategy. Ecology 62:602–610

    Article  Google Scholar 

  • Fowler CW (1987) A review of density dependence in populations of large mammals. In: Genoways HH (ed) Current mammalogy. Springer, Boston, MA, pp 1–84

    Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toigo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Gentry RL (1986) Fur seals maternal strategies on land and at sea. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Gentry RL (1998) Behavior and ecology of the northern fur seal. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Gibbens J, Parry LJ, Arnould JPY (2010) Influences on fecundity in Australian fur seals (Arctocephalus pusillus doriferus). J Mammal 91:510–518

    Article  Google Scholar 

  • Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (ed) Reproductive success. University of Chicago Press, Chicago, pp 454–471

  • Grether GF, Millie DF, Bryant MJ, Reznick DN, Mayea W (2001) Rain forest canopy cover, resource availability, and life history evolution in guppies. Ecology 82:1546–1559

    Article  Google Scholar 

  • Guinet C, Jouventin P, Georges JY (1994) Long-term population-changes of fur seals Arctocephalus-Gazella and Arctocephalus-Tropicalis on sub-antarctic (Crozet) and subtropical (St-Paul and Amsterdam) islands and their possible relationship to El-Niño-Southern-Oscillation. Antarct Sci 6:473–478

    Article  Google Scholar 

  • Guinet C, Roux JP, Bonnet M, Mison V (1998) Effect of body size, body mass, and body condition on reproduction of female South African fur seals (Arctocephalus pusillus) in Namibia. Can J Zool 76:1418–1424

    Article  Google Scholar 

  • Hamel S, Cote SD, Gaillard JM, Festa-Bianchet M (2009) Individual variation in reproductive costs of reproduction: high-quality females always do better. J Anim Ecol 78:143–151

    Article  PubMed  Google Scholar 

  • Haywood S, Perrins CM (1992) Is clutch size in birds affected by environmental-conditions during growth. Proc R Soc Lond B 249:195–197

    Article  CAS  Google Scholar 

  • Heath CB (1989) The behavioral ecology of the California SEA lion, Zalophus californianus. Dissertation, University of California

  • Henry CJK, Ulijaszek SJ (1996) Long-term consequences of early environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Hernandez-Camacho CJ, Aurioles-Gamboa D, Gerber LR (2008) Age-specific birth rates of California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Mar Mamm Sci 24:664–676

    Article  Google Scholar 

  • Hjernquist MB, Söderman F, Jönsson KI, Herczeg G, Laurila A, Merilä J (2012) Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. Oecologia 170:641–649

    Article  PubMed  Google Scholar 

  • Holmes EE, Fritz LW, York AE, Sweeney K (2007) Age-structured modeling reveals long-term declines in the natality of western Steller sea lions. Ecol Appl 17:2214–2232

    Article  PubMed  CAS  Google Scholar 

  • Jeanniard-du-Dot T, Trites AW, Arnould JPY, Guinet C (2017) Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS One 12:e0174001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeglinski JWE, Werner C, Robinson PW, Costa DP, Trillmich F (2012) Age, body mass and environmental variation shape the foraging ontogeny of Galapagos sea lions. Mar Ecol-Prog Ser 453:279–296

    Article  Google Scholar 

  • Jeglinski JWE, Wolf JBW, Werner C, Costa DP, Trillmich F (2015) Differences in foraging ecology align with genetically divergent ecotypes of a highly mobile marine top predator. Oecologia 179:1041–1052

    Article  PubMed  Google Scholar 

  • Kent JP (1992) Birth sex-ratios in sheep over 6 lambing seasons. Behav Ecol Sociobiol 30:151–155

    Article  Google Scholar 

  • Kraus C, Mueller B, Meise K, Piedrahita P, Porschmann U, Trillmich F (2013) Mama’s boy: sex differences in juvenile survival in a highly dimorphic large mammal, the Galapagos sea lion. Oecologia 171:893–903

    Article  PubMed  CAS  Google Scholar 

  • Krüger O (2005) Age at first breeding and fitness in goshawk Accipiter gentilis. J Anim Ecol 74:266–273

    Article  Google Scholar 

  • Kruuk LEB, Clutton-Brock TH, Rose KE, Guinness FE (1999) Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc R Soc Lond B 266:1655–1661

    Article  CAS  Google Scholar 

  • Lander RH (1981) A life table and biomass estimate for Alaskan fur seals. Fish Res 1:55–70

    Article  Google Scholar 

  • Langvatn R, Albon SD, Burkey T, Clutton-Brock TH (1996) Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J Anim Ecol 65:653–670

    Article  Google Scholar 

  • Laws RM (1956) Growth and sexual maturity in aquatic mammals. Nature 178:193–194

    Article  Google Scholar 

  • LeBoeuf BJ, Reiter J (1988) Lifetime reproductive success in northern elephant seals. In: Clutton-Brock TH (ed) Reproductive success studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 344–362

    Google Scholar 

  • Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348

    Article  PubMed  Google Scholar 

  • Lunn NJ, Boyd IL (1991) Pupping-site fidelity of Antarctic fur seals at Bird Island, South-Georgia. J Mammal 72:202–206

    Article  Google Scholar 

  • Lunn NJ, Boyd IL, Croxall JP (1994) Reproductive-performance of female Antarctic fur seals—the influence of age, breeding experience, environmental variation and individual quality. J Anim Ecol 63:827–840

    Article  Google Scholar 

  • McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zaremka P (ed) Frontiers in econometrics. Academic Press, New York, pp 105–142

    Google Scholar 

  • McKenzie J, Goldsworthy S, Shaughnessy P, McIntosh R (2005) Understanding the impediments to the growth of Australian sea lion populations. In: SARDI research report series No. 74. South Australian Research and Development Institute, Adelaide

  • McMahon CR, Harcourt RG, Burton HR, Daniel O, Hindell MA (2017) Seal mothers expend more on offspring under favourable conditions and less when resources are limited. J Anim Ecol 86:359–370

    Article  PubMed  Google Scholar 

  • Meise K, Krüger O, Piedrahita P, Trillmich F (2013) Site fidelity of male Galapagos sea lions: a lifetime perspective. Behav Ecol Sociobiol 67:1001–1011

    Article  Google Scholar 

  • Meise K, Piedrahita P, Krüger O, Trillmich F (2014) Being on time: size-dependent attendance patterns affect male reproductive success. Anim Behav 93:77–86

    Article  Google Scholar 

  • Merilä J, Svensson E (1997) Are fat reserves in migratory birds affected by condition in early life? J Avian Biol 28:279–286

    Article  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260

    Article  PubMed  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

  • Mueller B, Porschmann U, Wolf JBW, Trillmich F (2011) Growth under uncertainty: the influence of marine variability on early development of Galapagos sea lions. Mar Mammal Sci 27:350–365

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Newton I (1989) Lifetime reproduction in birds. Academic Press, London

    Google Scholar 

  • Nussey DH, Kruuk LEB, Morris A, Clutton-Brock TH (2007) Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr Biol 17:R1000–R1001

    Article  PubMed  CAS  Google Scholar 

  • Payne MR (1977) Growth of a fur seal population. Phil Trans R Soc B 279:67–79

    Article  Google Scholar 

  • Payne MR (1979) Growth in the Antarctic fur seal Arctocephalus-Gazella. J Zool 187:1–20

    Article  Google Scholar 

  • Pemberton JM, Albon SD, Guinness FE, Clutton-Brock TH (1991) Countervailing selection in different fitness components in female red deer. Evolution 45:93–103

    Article  PubMed  CAS  Google Scholar 

  • Piedrahita P, Meise K, Werner C, Krüger O, Trillmich F (2014) Lazy sons, self-sufficient daughters: are sons more demanding? Anim Behav 98:69–78

    Article  Google Scholar 

  • Pigeon G, Festa-Bianchet M, Pelletier F (2017) Long-term fitness consequences of early environment in a long-lived ungulate. Proc R Soc B 284:20170222

    Article  PubMed  Google Scholar 

  • Pistorius PA, Bester MN, Lewis MN, Taylor FE, Campagna C, Kirkman SP (2004) Adult female survival, population trend, and the implications of early primiparity in a capital breeder, the southern elephant seal (Mirounga leonina). J Zool 263:107–119

    Article  Google Scholar 

  • Pomeroy PP, Fedak MA, Rothery P, Anderson S (1999) Consequences of maternal size for reproductive expenditure and pupping success of grey seals at North Rona, Scotland. J Anim Ecol 68:235–253

    Article  Google Scholar 

  • Pörschmann U, Trillmich F, Mueller B, Wolf JBW (2010) Male reproductive success and its behavioural correlates in a polygynous mammal, the Galapagos sea lion (Zalophus wollebaeki). Mol Ecol 19:2574–2586

    PubMed  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Reiter J, Panken KJ, Leboeuf BJ (1981) Female competition and reproductive success in northern elephant seals. Anim Behav 29:670–687

    Article  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates, Sunderland, MA

  • Saba VS, Santidrián-Tomillo P, Reina RD, Spotila JR, Musick JA, Evans DA, Paladino FV (2007) The effect of the El Niño Southern Oscillation on the reproductive frequency of eastern Pacific leatherback turtles. J Appl Ecol 44:395–404

    Article  Google Scholar 

  • Saether BE, Andersen R, Hjeljord O, Heim M (1996) Ecological correlates of regional variation in life history of the moose Alces Alces. Ecology 77:1493–1500

    Article  Google Scholar 

  • Sinclair ARE, Fryxell JM (2006) Wildlife ecology, conservation, and management. Blackwell Science, Oxford

    Google Scholar 

  • Starrfelt J, Kokko H (2012) Bet-hedging—a triple trade-off between means, variances and correlations. Biol Rev 87:742–755

    Article  PubMed  Google Scholar 

  • Stauffer HB (2008) Contemporary Bayesian and frequentist statistical research methods for natural resource scientists. Wiley, Hoboken, NJ

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

  • Tavecchia G, Coulson T, Morgan BJT, Pemberton JM, Pilkington JC, Gulland FMD, Clutton-Brock TH (2005) Predictors of reproductive cost in female Soay sheep. J Anim Ecol 74:201–213

    Article  Google Scholar 

  • Testa JW (1987) Long-term reproductive patterns and sighting bias in Weddell seals (Leptonychotes-Weddelli). Can J Zool 65:1091–1099

    Article  Google Scholar 

  • Thomas DC (1982) The relationship between fertility and fat reserves of Peary caribou. Can J Zool 60:597–602

    Article  Google Scholar 

  • Tompkins P, Wolff M (2017) Galapagos macroalgae: a review of the state of ecological knowledge. Rev Biol Trop 65:375

    Article  PubMed  Google Scholar 

  • Trillmich F (1986) Maternal investment and sex-allocation in the Galapagos fur-seal, Arctocephalus-Galapagoensis. Behav Ecol Sociobiol 19:157–164

    Google Scholar 

  • Trillmich F (1990) The behavioral ecology of maternal effort in fur seals and sea lions. Behaviour 114:3–20

    Article  Google Scholar 

  • Trillmich F, Dellinger T (1991) The effects of El Niño on Galapagos pinnipeds. In: Trillmich F, Ono KA (eds) Pinnipeds and El Niño: responses to environmental stress. Springer, Berlin, pp 66–74

    Chapter  Google Scholar 

  • Trillmich F, Meise K, Kalberer S, Mueller B, Piedrahita P, Porschmann U, Wolf JBW, Krüger O (2016) On the challenge of interpreting census data: insights from a study of an endangered pinniped. PLoS One 11:e0154588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trillmich F, Wolf JBW (2008) Parent-offspring and sibling conflict in Galapagos fur seals and sea lions. Behav Ecol Sociobiol 62:363–375

    Article  Google Scholar 

  • Vargas FH, Harrison S, Rea S, MacDonald DW (2006) Biological effects of El Niño on the Galapagos penguin. Biol Conserv 127:107–114

    Article  Google Scholar 

  • Viallefont A, Cooke F, Lebreton JD (1995) Age-specific costs of first-time breeding. Auk 112:67–76

    Article  Google Scholar 

  • Villegas-Amtmann S, Costa DP, Tremblay Y, Salazar S, Aurioles-Gamboa D (2008) Multiple foraging strategies in a marine apex predator, the Galapagos sea lion Zalophus wollebaeki. Mar Ecol-Prog Ser 363:299–309

    Article  Google Scholar 

  • Vindenes Y, Langangen O, Winfield IJ, Vollestad LA (2016) Fitness consequences of early life conditions and maternal size effects in a freshwater top predator. J Anim Ecol 85:692–704

    Article  PubMed  Google Scholar 

  • Williams GC (1966) Natural selection costs of reproduction and a refinement of Lack’s principle. Am Nat 100:687–690

    Article  Google Scholar 

  • Wolf JBW, Trillmich F (2007) Beyond habitat requirements: individual fine-scale site fidelity in a colony of the Galapagos sea lion (Zalophus wollebaeki) creates conditions for social structuring. Oecologia 152:553–567

    Article  PubMed  Google Scholar 

  • Wolff M, Ruiz DJ, Taylor M (2012) El Nino induced changes to the Bolivar Channel ecosystem (Galapagos): comparing model simulations with historical biomass time series. Mar Ecol-Prog Ser 448:7–22

    Article  Google Scholar 

  • Würsig B, Thewissen JGM, Kovacs KM (2017) Encyclopedia of marine mammals. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

We thank the Galapagos National Park for the permits to conduct this study and the Charles Darwin Research Station for providing the sea surface temperature data and continuous logistical support. Birte Müller, Paolo Piedrahita, Ulrich Pörschmann and Jochen B. W. Wolf and excellent field assistants, too numerous to name them all, were vital for the success of our study. We also thank Prof. M. Festa-Bianchet and two anonymous reviewers for their helpful comments on earlier manuscripts.

Funding

The study was supported by the Volkswagen-Stiftung (2003–2004), the Friends of the Galapagos (Switzerland) (2005) and the German Research Foundation (DFG; TR 105/18-1 and 18-2; 2006–2014; KR 2089/10-1; 2015–2018). This publication is contribution number 2201 of the Charles Darwin Foundation for the Galapagos Islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Kalberer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study presented here complies with the laws of Ecuador and was licensed by the Galápagos National Park Service.

Additional information

Communicated by S. D. Twiss

Electronic supplementary material

ESM 1

(DOCX 30.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalberer, S., Meise, K., Trillmich, F. et al. Reproductive performance of a tropical apex predator in an unpredictable habitat. Behav Ecol Sociobiol 72, 108 (2018). https://doi.org/10.1007/s00265-018-2521-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-018-2521-7

Keywords

Navigation