Skip to main content

Advertisement

Log in

The interspecific relationship between prevalence of blood parasites and sexual traits in birds when considering recent methodological advancements

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Hamilton and Zuk (Science 218:384–387, 1982) supported their influential hypothesis of parasite-mediated sexual selection based on a positive interspecific correlation between the prevalence of blood parasites and the expression of male displays in birds. However, subsequent studies provided mixed support for this relationship after considering several confounding factors. Here, we revisit this fundamental prediction by refining the analyses through implementation of recent methodological advancements. First, we distinguish between prevalence data obtained through microscopic and molecular tools, as PCR-based detection methods may be more sensitive for detecting infection. Second, we use quantitative estimates of both acoustic and visual signals of males, in which color measurements adopt the perspective of avian vision. Third, applying modern phylogenetic comparative approaches, we correct for phylogenetic inertia as well as heterogeneity in sampling effort. Fourth, we distinguish between prevalence transition states, as we compare species with and without evidence of infection and also monitor changes in parasite prevalence only in species in which blood parasites are detected. We show that given the considerable variation among populations, the repeatability of prevalence at the within-species level is modest. We failed to detect a strong interspecific relationship between the prevalence of blood parasites and sexual traits. However, we found that an evolutionary increase from zero to non-zero prevalence is likely to be accompanied by an increase in trait expression in males, but further increase from non-zero prevalence to a higher level of infection tends to be associated with a reduced degree of trait elaboration. Our results provide some support to the Hamilton and Zuk hypothesis, but the relationship between blood parasites and male displays varies among traits depending on degree of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Andersson S, Örnborg J, Andersson M (1998) Ultraviolet sexual dimorphism and assortative mating in blue tits. Proc R Soc Lond B Biol Sci 265:445–450

    Article  Google Scholar 

  • Armenta JK, Dunn PO, Whittingham LA (2008) Quantifying avian sexual dichromatism: a comparison of methods. J Exp Biol 211:2423–2430

    Article  PubMed  Google Scholar 

  • Arriero E, Møller AP (2008) Host ecology and life-history traits associated with blood parasite species richness in birds. J Evol Biol 21:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 36:197–204

    PubMed  CAS  Google Scholar 

  • Bennett PM, Owens IPF (2002) Evolutionary ecology of birds. Oxford University Press, Oxford

    Google Scholar 

  • Bennett ATD, Cuthill IC, Norris K (1994) Sexual selection and the mismeasure of color. Am Nat 144:848–860

    Article  Google Scholar 

  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vis Res 37:2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Buchanan KL, Catchpole CK, Lewis JW, Lodge A (1999) Song as an indicator of parasitism in the sedge warbler. Anim Behav 57:307–314

    Article  PubMed  Google Scholar 

  • Byers BE, Kroodsma DE (2009) Female mate choice and songbird song repertoires. Anim Behav 77:13–22

    Article  Google Scholar 

  • Clayton DH, Pruett-Jones SG, Lande R (1992) Reappraisal of the interspecific prediction of parasite-mediated sexual selection: opportunity knocks. J Theor Biol 157:95–108

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Cosgrove CL, Day KP, Sheldon BC (2006) Coamplification of Leucocytozoon by PCR diagnostic tests for avian malaria: a cautionary note. J Parasitol 92:1362–1365

    Article  PubMed  CAS  Google Scholar 

  • Cox FEG (1989) Parasites and sexual selection. Nature 341:289

    Article  PubMed  CAS  Google Scholar 

  • Davis KE (2008) Reweaving the tapestry: a supertree of birds. Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow

    Google Scholar 

  • Eaton MD (2005) Human vision fails to distinguish widespread sexual dichromatism among sexually “monochromatic” birds. Proc Natl Acad Sci USA 102:10942–10946

    Article  PubMed  CAS  Google Scholar 

  • Endler JA, Lyles AM (1989) Bright ideas about parasites. Trends Ecol Evol 4:246–248

    Article  PubMed  CAS  Google Scholar 

  • Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ (2009) Effects of urbanisation on disease prevalence and age structure in blackbird Turdus merula populations. Oikos 118:774–782

    Article  Google Scholar 

  • Fallon SM, Ricklefs RE (2008) Parasitemia in PCR-detected Plasmodium and Haemoproteus infections in birds. J Avian Biol 39:514–522

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Felsenstein J (2008) Comparative methods with sampling error and within-species variation: Contrasts revisited and revised. Am Nat 171:713–725

    Article  PubMed  Google Scholar 

  • Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Freed LA, Cann RL (2003) On polymerase chain reaction tests for estimating prevalence of malaria in birds. J Parasitol 89:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Freed LA, Cann RL (2006) DNA quality and accuracy of avian malaria PCR diagnostics: a review. Condor 108:459–473

    Article  Google Scholar 

  • Garamszegi LZ (2006) Comparing effect sizes across variables: generalization without the need for Bonferroni correction. Behav Ecol 17:682–687

    Article  Google Scholar 

  • Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96:1197–1203

    Article  PubMed  Google Scholar 

  • Garamszegi LZ (2011) Climate change increases the risk of malaria in birds. Glob Chang Biol 17:1751–1759

    Article  Google Scholar 

  • Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805

    PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP, Török J, Michl G, Péczely P, Richard M (2004) Immune challenge mediates vocal communication in a passerine bird: an experiment. Behav Ecol 15:148–157

    Article  Google Scholar 

  • Garamszegi LZ, Biard C, Eens M, Møller AP, Saino N (2007a) Interspecific variation in egg testosterone levels: implications for the evolution of bird song. J Evol Biol 20:950–964

    Article  PubMed  CAS  Google Scholar 

  • Garamszegi LZ, Erritzøe J, Møller AP (2007b) Feeding innovations and parasitism in birds. Biol J Linn Soc 90:441–455

    Article  Google Scholar 

  • Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015–3035

    Article  PubMed  Google Scholar 

  • Garvin MC, Remsen JV (1997) An alternative hypothesis for heavier parasite loads of brightly colored birds: exposure at the nest. Auk 114:179–191

    Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites. Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Vorobyev M (2005) Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol A 191:381–392

    Article  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC, Bennett ATD (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J Comp Physiol Sens Neural Behav Physiol 186:375–387

    Article  CAS  Google Scholar 

  • Harvey PH (2000) Why and how phylogenetic relationships should be incorporated into studies of scaling. In: Brown JH, West GB (eds) Scaling in Biology. Oxford University Press, Oxford, pp 253–265

    Google Scholar 

  • Håstad O, Victorsson J, Ödeen A (2005) Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc Natl Acad Sci USA 102:6391–6394

    Article  PubMed  Google Scholar 

  • Hausmann F, Arnold KE, Marshall NJ, Owens IPF (2003) Ultraviolet signals in birds are special. Proc R Soc Lond B Biol Sci 270:61–67

    Article  Google Scholar 

  • Hoberg EP, Brooks DR, Siegel-Causey D (1997) Host-parasite co-speciation: history, principles and prospects. In: Clayton DH, Moore J (eds) Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 213–235

    Google Scholar 

  • Hofmann CM, Cronin TW, Omland KE (2008a) Evolution of sexual dichromatism. 1. Convergent losses of elaborate female coloration in New World Orioles (Icterus spp.). Auk 125:778–789

    Article  Google Scholar 

  • Hofmann CM, Cronin TW, Omland KE (2008b) Evolution of sexual dichromatism. 2. Carotenoids and melanins contribute to sexual dichromatism in New World Orioles (Icterus Spp.). Auk 125:790–795

    Article  Google Scholar 

  • Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56:252–270

    Article  PubMed  Google Scholar 

  • Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–158

    PubMed  Google Scholar 

  • John JL (1995) Haematozoan parasites, mating systems and colorful plumages in songbirds. Oikos 72:395–401

    Article  Google Scholar 

  • Johnson SG (1991) Effects of predation, parasites, and phylogeny on the evolution of bright coloration in North American male passerines. Evol Ecol 5:52–62

    Article  Google Scholar 

  • Jovani R, Tella JL (2006) Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol 22:214–218

    Article  PubMed  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • McManus DP, Bowles J (1996) Molecular genetic approaches to parasite identification: their value in diagnostic parasitology and systematics. Int J Parasitol 26:687–704

    Article  PubMed  CAS  Google Scholar 

  • Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs RE (2005) Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109:396–404

    Article  Google Scholar 

  • Milinski M (2001) Bill Hamilton, sexual selection, and parasites. Behav Ecol 12:264–266

    Article  Google Scholar 

  • Møller AP (1990) Parasites and sexual selection: current status of the Hamilton and Zuk hypothesis. J Evol Biol 3:319–328

    Article  Google Scholar 

  • Møller AP (2008) Flight distance and blood parasites in birds. Behav Ecol 19:1305–1313

    Article  Google Scholar 

  • Møller AP, Birkhead TR (1994) The evolution of plumage brightness in birds is related to extrapair paternity. Evolution 48:1089–1100

    Article  Google Scholar 

  • Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists. Oecologia 132:492–500

    Article  Google Scholar 

  • Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    Article  PubMed  Google Scholar 

  • Møller AP, Christe P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20

    Article  PubMed  Google Scholar 

  • Møller AP, Henry P-Y, Erritzøe J (2000) The evolution of song repertoires and immune defence in birds. Proc R Soc Lond B 267:165–169

    Article  Google Scholar 

  • Møller AP, Nielsen JT, Garamszegi LZ (2006) Song post exposure, song features and predation risk. Behav Ecol 17:155–163

    Article  Google Scholar 

  • Møller AP, Nielsen JT, Garamszegi LZ (2008) Risk taking by singing males. Behav Ecol 19:41–53

    Article  Google Scholar 

  • Møller AP, Garamszegi LZ, Peralta-Sánchez JM, Soler JJ (2011) Migratory divides and their consequences for dispersal, population size and parasite–host interactions. J Evol Biol 24:1744–1755

    Article  PubMed  Google Scholar 

  • Montgomerie R (2006) Analyzing colours. In: Hill GE, McGraw KJ (eds) Bird coloration. Harvard University Press, Cambridge, MA, pp 90–147

    Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Marshall LJ, Spencer HG (2000) Genetic variation and prevalence of blood parasites do not correlate among bird species. J Zool London 252:381–388

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Read AF (1987) Comparative evidence supports the Hamilton and Zuk hypothesis on parasites and sexual selection. Nature 328:68–70

    Article  Google Scholar 

  • Read AF (1988) Sexual selection and the role of parasites. Trends Ecol Evol 3:97–102

    Article  PubMed  CAS  Google Scholar 

  • Read AF, Harvey PH (1989) Reassesment of comparative evidence for Hamilton and Zuk theory on the evolution of secondary sexual characters. Nature 339:618–620

    Article  Google Scholar 

  • Read AF, Weary DM (1990) Sexual selection and the evolution of bird song: a test of the Hamilton–Zuk hypothesis. Behav Ecol Sociobiol 26:47–56

    Article  Google Scholar 

  • Read AF, Weary DM (1992) The evolution of bird song: comparative analyses. Philos Trans R Soc Lond Ser B 338:165–187

    Article  Google Scholar 

  • Richard FA, Sehgal RNM, Jones HI, Smith TB (2002) A comparative analysis of PCR-based detection methods for avian malaria. J Parasitol 88:819–822

    PubMed  CAS  Google Scholar 

  • Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abrain A, Scheuerlein A, Gray J, Latta SC (2005) Community relationships of avian malaria parasites in Southern Missouri. Ecol Monogr 75:543–559

    Article  Google Scholar 

  • Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60:1509–1515

    Article  PubMed  Google Scholar 

  • Saino N, Galeotti P, Sacchi R, Møller AP (1997) Song and immunological conditions in male barn swallows (Hirundo rustica). Behav Ecol 8:364–371

    Article  Google Scholar 

  • Scheuerlein A, Ricklefs RE (2004) Prevalence of blood parasites in European passeriform birds. Proc R Soc Lond B 271:1363–1370

    Article  Google Scholar 

  • Seddon N, Tobias JA, Eaton MD, Ödeen A (2010) Human vision can provide a valid proxy for avian perception of sexual dichchromatism. Auk 127:283–292

    Article  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman & Co., New York

    Google Scholar 

  • Soma M, Garamszegi LZ (2011) Rethinking birdsong evolution: meta-analysis of the relationship between song complexity and reproductive success. Behav Ecol 22:363–371

    Article  Google Scholar 

  • Tella JL (2002) The evolutionary transition to coloniality promotes higher blood parasitism in birds. J Evol Biol 15:32–41

    Article  Google Scholar 

  • Tella JL, Blanco G, Forero MG, Gajon A, Donazar JA, Hiraldo F (1999) Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc Natl Acad Sci USA 96:1785–1789

    Article  PubMed  CAS  Google Scholar 

  • Underhill LG, Kaleita-Summers B (1995) Blood parasites in bright birds: testing the Hamilton–Zuk hypothesis in sub-Saharan Africa with an improved statistical method. Ostrich 66:10–14

    Article  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  • Valkiūnas G, Bensch S, Iezhova TA, Krizanauskiene A, Hellgren O, Bolshakov CV (2006) Nested cytochrome B polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92:418–422

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Iezhova TA, Krizanauskiene A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and RCR-based detection methods for blood parasites. J Parasitol 94:1395–1401

    Article  PubMed  Google Scholar 

  • Vorobyev M (2003) Coloured oil droplets enhance colour discrimination. Proc R Soc Lond B Biol Sci 270:1255–1261

    Article  Google Scholar 

  • Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633

    Article  PubMed  CAS  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D, Östman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  • Weatherhead PJ, Metz KJ, Bennett GF, Irwin RE (1993) Parasite faunas, testosterone and secondary sexual traits in male red-winged blackbirds. Behav Ecol Sociobiol 33:13–23

    Article  Google Scholar 

  • Weiss JB (1995) DNA probes and PCR for diagnosis of parasitic infections. Clin Microbiol Rev 8:113–130

    PubMed  CAS  Google Scholar 

  • Yezerinac SM, Weatherhead PJ (1995) Plumage coloration, differential attraction of vectors and Hematozoa infections in birds. J Anim Ecol 64:528–537

    Article  Google Scholar 

Download references

Acknowledgments

During this study, LZG was supported by a “Ramon y Cajal” research grant from the Spanish National Research Council [Consejo Superior de Investigaciones Científicas (CSIC), Spain] and by the “Plan Nacional” program of the Spanish government (LZG, ref. no. CGL2009-10652 and CGL2009-09439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Zsolt Garamszegi.

Additional information

Communicated by S. Pruett-Jones

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Comparative data of birds used to test for the relationship between the expression of sexual characters and prevalence of four blood parasite genera. Sample sizes (number of birds screened and found infected) are given separately for microscopy- and PCR-based detection methods (XLS 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garamszegi, L.Z., Møller, A.P. The interspecific relationship between prevalence of blood parasites and sexual traits in birds when considering recent methodological advancements. Behav Ecol Sociobiol 66, 107–119 (2012). https://doi.org/10.1007/s00265-011-1259-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-011-1259-2

Keywords

Navigation