Skip to main content

Advertisement

Log in

Taxol-mediated changes in fibrosarcoma-induced immune cell function: Modulation of antitumor activities

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The anticancer drug taxol (paclitaxel) inhibits tumors through multiple cytotoxic and cytostatic mechanisms. Independently of these mechanisms, taxol induces distinct immunological efficacy when it acts as a second signal for activation of tumoricidal activity by interferon-γ(IFNγ)-primed murine normal host macrophages. We reported that tumor-distal macrophages, which mediate immunosuppression through dysregulated nitric oxide (NO) and tumor necrosis factor α (TNFα) production, are differentially regulated by taxol. Because taxol influences tumor cell growth dynamics and activates immune cell populations, we assessed the ex vivo immunosuppressive and antitumor activities of taxol-treated normal host and tumor-bearing host (TBH) macrophages. Pretreatment of such cells with taxol partly reconstituted T cell alloantigen reactivity, suggesting that taxol mediates a limited reversal of TBH macrophage immunosuppressive activity. Taxol-treated TBH macrophages significantly suppressed the growth of fibrosarcoma cells (Meth-KDE) through soluble effector molecules and promoted direct cell-mediated cytotoxicity, indicating that taxol enhanced tumor-induced macrophage antitumor activities. Tumor-induced helper T cells, however, showed a higher sensitivity to direct taxol-induced suppression. These data demonstrate that taxol exerts pleiotropic effects on antitumor immune responses with the capacity to abate the immunosuppressive activities of macrophages and promote macrophage-mediated anti-tumor activities simultaneously, but also directly modulating T cell reactivity. Collectively, these studies suggest that the antineoplastic drug taxol may impart antitumor activity through an immunotherapeutic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assays. J Immunol Methods 171:211

    Article  Google Scholar 

  2. Albina JE, Abate JA, Henry WL Jr (1991) Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation: role of IFN-γ in the induction of the nitric oxide-synthesizing pathway. J Immunol 147:144

    PubMed  CAS  Google Scholar 

  3. Alleva DG, Burger CJ, Elgert KD (1994) Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-oc production: role of tumor-derived IL-10, TGF-β, and prostaglandin E2. J Immunol 153:1674

    PubMed  CAS  Google Scholar 

  4. Beissert S, Bergholz M, Waase I, Lepsien G, Schauer A, Pfizenmaier K, Kronke M (1989) Regulation of tumor necrosis factor gene expression in colorectal adenocarcinoma: in vivo analysis by in situ hybridization. Proc Natl Acad Sci USA 86:5064

    Article  PubMed  CAS  Google Scholar 

  5. Bhalla K, Ibrado AM, Tourkina E, Tang C, Mahoney ME, Huang Y (1993) Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia 7:563

    PubMed  CAS  Google Scholar 

  6. Bogdan C, Ding A (1992) Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor-α and interleukin-1 in macrophages. J Leukoc Biol 52:119

    PubMed  CAS  Google Scholar 

  7. Bottex-Gauthier C, Condemine F, Picot F, Vidal D (1992) Effects of taxol on the macrophage function: interactions with some immunological parameters. Immunopharmacol Immunotoxicol 14:39

    Article  PubMed  CAS  Google Scholar 

  8. Brown DL, Little JE, Chaly N, Schweitzer I, Paulin-Levasseur M (1985) Effects of taxol on microtubule organization in mouse splenic lymphocytes and on response to mitogenic stimulation. Eur J Cell Biol 37:130

    PubMed  CAS  Google Scholar 

  9. Chuang LT, Lotzova E, Cook KR, Cristoforoni P, Morris M, Wharton JT (1993) Effect of new investigational drug taxol on oncolytic activity and stimulation of human lymphocytes. Gynecol Oncol 49:291

    Article  PubMed  CAS  Google Scholar 

  10. Chuang LT, Lotzova E, Heath J, Cook KR, Munkarah A, Morris M, Wharton JT (1994) Alteration of lymphocyte microtubule assembly, cytotoxicity, and activation by the anticancer drug taxol. Cancer Res 54:1286

    PubMed  CAS  Google Scholar 

  11. Denis M (1994) Human monocytes/macrophages: NO or no NO? J Leukoc Biol 55:682

    PubMed  CAS  Google Scholar 

  12. Ding AH, Porteu F, Sanchez E, Nathan CF (1990) Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248:370

    Article  PubMed  CAS  Google Scholar 

  13. Donaldson KL, Goolsby GL, Wahl AF (1994) Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer 57:847

    Article  PubMed  CAS  Google Scholar 

  14. Dugas B, Mossalayi MD, Damais C, Kolb J-P (1995) Nitric oxide production by human monocytes: evidence for role of CD23. Immunol Today 16:574

    Article  PubMed  CAS  Google Scholar 

  15. Eisenstein TK (1994) Suppressor macrophages. Immunol Ser 60:203

    PubMed  CAS  Google Scholar 

  16. Elgert KD, Connolly KM (1978) Macrophage regulation of the T cell allogeneic response during tumor growth. Cell Immunol 35:1

    Article  PubMed  CAS  Google Scholar 

  17. Elgert KD, Farrar WL (1978) Suppressor cell activity in tumor-bearing mice. I. Dualistic inhibition by suppressor T lymphocytes and macrophages. J Immunol 120:1345

    PubMed  CAS  Google Scholar 

  18. Fuchs DA, Johnson RK (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 62:1219

    PubMed  CAS  Google Scholar 

  19. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, [15N]nitrate in biological fluids. Anal Biochem 126:131

    Article  PubMed  CAS  Google Scholar 

  20. Gregory SH, Sagnimeni AJ, Wing EJ (1994) Arginine analogues suppress antigen-specific and -nonspecific T lymphocyte proliferation. Cell Immunol 153:527

    Article  PubMed  CAS  Google Scholar 

  21. Hajek R, Vorlicek J, Slavik M (1996) Paclitaxel (taxol): a review of its antitumor activity in clinical studies. Neoplasma 43:141

    PubMed  CAS  Google Scholar 

  22. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87

    Article  PubMed  CAS  Google Scholar 

  23. Holmes FA, Walters RS, Theriault RL, Forman AD, Newton LK, Raber MN, Buzdar AU, Frye DK, Hortobagyi GN (1991) Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 83:1797

    Article  PubMed  CAS  Google Scholar 

  24. Hwang S, Ding A (1995) Activation of NF-kappa B in murine macrophages by taxol. Cancer Biochem Biophys 14:265

    PubMed  CAS  Google Scholar 

  25. Kingston DGI (1991) The chemistry of taxol. Pharmacol Ther 52:1

    Article  PubMed  CAS  Google Scholar 

  26. Kirikae T, Ojima I, Kirikae F, Ma Z, Kuduk SD, Slater JC, Takeuchi CS, Bounaud PY, Nakano M (1996) Structural requirements of taxoids for nitric oxide and tumor necrosis factor production by murine macrophages. Biochem Biophys Res Commun 227:227

    Article  PubMed  CAS  Google Scholar 

  27. Liebmann J, Cook JA, Fisher J, Teague D, Mitchell JB (1994) In vitro studies of taxol as a radiation sensitizer in human tumor cells. J Natl Cancer Inst 86:441

    Article  PubMed  CAS  Google Scholar 

  28. Manfredi JJ, Horwitz SB (1986) Taxol: an antimitotic agent with a new mechanism of action. In: Dethlefsen LA (ed) International encyclopedia of pharmacology and therapeutics, cell cycle effects of drugs, vol 121. Pergamon, Oxford, pp 287–333

    Google Scholar 

  29. Manfredi JJ, Parness J, Horwitz SB (1982) Taxol binds to cellular microtubules. J Cell Biol 94:688

    Article  PubMed  CAS  Google Scholar 

  30. Manthey CL, Brandes ME, Perera P-Y, Vogel SN (1992) Taxol increases steady-state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J Immunol 149:2459

    PubMed  CAS  Google Scholar 

  31. Manthey CL, Perera P-Y, Salkowski CA, Vogel SN (1994) Taxol provides a second signal for murine macrophage tumorcidical activity. J Immunol 152:825

    PubMed  CAS  Google Scholar 

  32. Mantovani A, Ming WJ, Batotta C, Abdeljali B, Botazzi B (1986) Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim Biophys Acta 865:59

    PubMed  CAS  Google Scholar 

  33. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC (1989) Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Int Med 111:273

    PubMed  CAS  Google Scholar 

  34. Mills CD, Shearer J, Evans R, Caldwell MD (1992) Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol 149:2709

    PubMed  CAS  Google Scholar 

  35. Moncada S, Palmer RMJ, Hibbs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109

    PubMed  CAS  Google Scholar 

  36. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods 65:55

    Article  PubMed  CAS  Google Scholar 

  37. Mullins DW, Alleva DG, Burger CJ, Elgert KD (1997) Taxol, a microtubule-stabilizing antineoplastic agent, differentially regulates normal and tumor-bearing host macrophage nitric oxide production. Immunopharmacology (in press)

  38. Ozols RF (1995) Current status of chemotherapy for ovarian cancer. Semin Oncol 22:61

    PubMed  CAS  Google Scholar 

  39. Rowinsky EK, Donehower RC, Jones RJ, Tucker RW (1988) Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res 48:4093

    PubMed  CAS  Google Scholar 

  40. Roy C, Chaly N, Brown DL (1988) Taxol-induced reorganization of the microtubule system in murine splenic lymphocytes inhibits response to allogeneic cells but not to concanavalin A. Biochem Cell Biol 66:389

    Article  PubMed  CAS  Google Scholar 

  41. Russell SW, Pace JL, Varesio L, Akporiaya E, Blasi E, Celando A, Schreiber RD, Schultz RM, Stevenson AP, Stewart CC, Stewart SJ (1986) Comparison of five short-term assays that measure nonspecific cytotoxicity mediated to tumor cells by activated macrophages. J Leukoc Biol 40:801

    PubMed  CAS  Google Scholar 

  42. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 22:665

    Article  Google Scholar 

  43. Vogel SN, Manthey CL, Brandes ME, Perera P-Y, Salkowski CA (1993) LPS minetic effects of taxol on LPS-inducible gene expression, glucorticoid receptor expression, and tyrosine phosphorylation in murine macrophages. In: Levin J, Alving CR, Munford RS, Stutz PL (eds) Bacterial endotoxin: recognition and effector mechanisms. Excerpta Medica, New York, pp 243

    Google Scholar 

  44. Walker TM, Burger CJ, Elgert KD (1994) Tumor growth alters T cell and macrophage production of and responsiveness to granulocyte-macrophage colony-stimulating factor: partial dysregulation through interleukin-10. Cell Immunol 154:342

    Article  PubMed  CAS  Google Scholar 

  45. Weinberg JB, Misukonis MA, Shami PJ, Mason SN, Sauls DL, Dittman WA, Wood ER, Smith GK, McDonald B, Bachus KE, Haney AF, Granger DL (1995) Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 86:1184

    PubMed  CAS  Google Scholar 

  46. Williams S, Mutch DG, Xu L, Collins JL (1992) Divergent effects of taxol on tumor necrosis factor-α-mediated cytolysis of ovarian carcinoma cells. Am J Obstet Gynecol 167:1870

    PubMed  CAS  Google Scholar 

  47. Yurochko AD, Burger CJ, Elgert KD (1990) Tumor modulation of autoreactivity: decreased macrophage and autoreactive T cell interactions. Cell Immunol 127:105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus D. Elgert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullins, D.W., Walker, T.M., Burger, C.J. et al. Taxol-mediated changes in fibrosarcoma-induced immune cell function: Modulation of antitumor activities. Cancer Immunol Immunother 45, 20–28 (1997). https://doi.org/10.1007/s002620050396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002620050396

Key words

Navigation