Skip to main content

Advertisement

Log in

Evaluation of antitumor immunity by a combination treatment of high-dose irradiation, anti-PDL1, and anti-angiogenic therapy in murine lung tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

C57BL/6 mice implanted in the flank with murine Lewis lung carcinoma cells were randomized into control, anti-angiogenic, anti-PD-L1, radiotherapy (RT), RT + anti-angiogenic, RT + anti-PD-L1, and RT + anti-PD-L1 + anti-angiogenic therapy groups. Immune response and immunophenotyping were determined by flow cytometry. Vasculature analysis after RT and anti-angiogenic therapy was assessed by quantified power Doppler sonography. Antitumor response, survival, and rechallenged tumor growth were evaluated. RT increased PD-L1 expression on CD8+ T, CD4+ T, dendritic, myeloid-derived suppressor cells (MDSCs), and tumor cells and increased PD-1 expression on CD8+ and CD4+ T cells. Anti-angiogenic therapy insignificantly decreased the RT-induced PD-1 expression on CD8+ and CD4+ T cells, implying a weak reversal of the immune-suppressive environment. Transient vessel collapse was observed within days after RT, and blood flow recovered at 1 week after RT. RT + anti-PD-L1 suppressed the tumor growth, improved survival, and prolonged immune memory capable of protecting against tumor recurrence, evidenced by local accumulation of CD8+ T cells and reduction in MDSCs in microenvironment. Similar and more prominent effects were observed when anti-VEGF was added to RT + anti-PDL1 therapies, implying an additive, rather than synergistic, antitumor immunity. Phenotypic analyses revealed that anti-cancer treatments increased the proportion of effector memory T cells in TILs and splenocytes, and RT, alone or in combination with other treatments, further increased the proportion of central memory T cells in splenocytes. These results provide evidence on operating the immunosuppressive tumor environment and offer insights into the design of the new combination treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Citrin DE (2017) Recent developments in radiotherapy. N Engl J Med 377:1065–1075. https://doi.org/10.1056/NEJMra1608986

    Article  CAS  PubMed  Google Scholar 

  2. Demaria S, Golden EB, Formenti SC (2015) Role of local radiation therapy in cancer immunotherapy. JAMA Oncol 1:1325–1332. https://doi.org/10.1001/jamaoncol.2015.2756

    Article  PubMed  Google Scholar 

  3. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105:256–265. https://doi.org/10.1093/jnci/djs629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Filatenkov A, Baker J, Mueller AM et al (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21:3727–3739. https://doi.org/10.1158/1078-0432.ccr-14-2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595. https://doi.org/10.1182/blood-2009-02-206870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695. https://doi.org/10.1172/jci67313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baumann P, Nyman J, Hoyer M et al (2009) Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 27:3290–3296. https://doi.org/10.1200/jco.2008.21.5681

    Article  PubMed  Google Scholar 

  8. Palma DA, Olson R, Harrow S et al (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393:2051–2058. https://doi.org/10.1016/s0140-6736(18)32487-5

    Article  PubMed  Google Scholar 

  9. Pennock GK, Chow LQ (2015) The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist 20:812–822. https://doi.org/10.1634/theoncologist.2014-0422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim YJ, Koh J, Kim K et al (2015) High ratio of programmed cell death protein 1 (PD-1)(+)/CD8(+) tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy. Radiother Oncol 117:165–170. https://doi.org/10.1016/j.radonc.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  11. Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468. https://doi.org/10.1158/0008-5472.can-14-1258

    Article  CAS  PubMed  Google Scholar 

  12. Mowery YM, Patel K, Chowdhary M et al (2019) Retrospective analysis of safety and efficacy of anti-PD-1 therapy and radiation therapy in advanced melanoma: a bi-institutional study. Radiother Oncol 138:114–120. https://doi.org/10.1016/j.radonc.2019.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin H, Wei S, Hurt EM et al (2018) Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest 128:805–815. https://doi.org/10.1172/jci96113

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570

    CAS  PubMed  Google Scholar 

  15. Timke C, Zieher H, Roth A, Hauser K, Lipson KE, Weber KJ, Debus J, Abdollahi A, Huber PE et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14:2210–2219. https://doi.org/10.1158/1078-0432.CCR-07-1893

    Article  CAS  PubMed  Google Scholar 

  16. Kim DW, Huamani J, Niermann KJ, Lee H, Geng L, Leavitt LL, Baheza RA, Jones CC, Tumkur S, Yankeelov TE, Fleischer AC, Hallahan DE (2006) Noninvasive assessment of tumor vasculature response to radiation-mediated, vasculature-targeted therapy using quantified power Doppler sonography: implications for improvement of therapy schedules. J Ultrasound Med 25:1507–1517. https://doi.org/10.7863/jum.2006.25.12.1507

    Article  PubMed  Google Scholar 

  17. Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563. https://doi.org/10.1016/j.ccr.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  18. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186. https://doi.org/10.1056/nejm197111182852108

    Article  CAS  PubMed  Google Scholar 

  19. Ott PA, Hodi FS, Buchbinder EI (2015) Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front Oncol 5:202. https://doi.org/10.3389/fonc.2015.00202

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15:325–340. https://doi.org/10.1038/nrclinonc.2018.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rini BI, Powles T, Atkins MB et al (2019) Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393:2404–2415. https://doi.org/10.1016/s0140-6736(19)30723-8

    Article  PubMed  Google Scholar 

  22. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70:6171–6180. https://doi.org/10.1158/0008-5472.can-10-0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382:1894–1905

    Article  CAS  PubMed  Google Scholar 

  24. Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S, Thijssen VLJL (2019) Combining radiotherapy with anti-angiogenic therapy and immunotherapy: a therapeutic triad for cancer? Front Immunol 9:3107. https://doi.org/10.3389/fimmu.2018.03107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sahebjam S, Forsyth P, Arrington J et al (2017) ATIM-18. A phase I trial of hypofractionated stereotactic irradiation (HFSRT) with pembrolizumab and bevacizumab in patients with recurrent high grade gliomas (NCT02313272). Neuro-Oncol 18:vi21. https://doi.org/10.1093/neuonc/nox168.113

    Article  Google Scholar 

  26. Li QX, Feuer G, Ouyang X, An X (2017) Experimental animal modeling for immuno-oncology. Pharmacol Ther 173:34–46. https://doi.org/10.1016/j.pharmthera.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  27. Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377. https://doi.org/10.1038/nature14292

    Article  CAS  PubMed  Google Scholar 

  28. Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, Smyth MJ (2015) A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res 75:3800–3811. https://doi.org/10.1158/0008-5472.can-15-1082

    Article  CAS  PubMed  Google Scholar 

  29. Chen YF, Yuan A, Cho KH, Lu YC, Kuo MY, Chen JH, Chang YC (2017) Functional evaluation of therapeutic response of HCC827 lung cancer to bevacizumab and erlotinib targeted therapy using dynamic contrast-enhanced and diffusion-weighted MRI. PLoS ONE 12(11):e0187824. https://doi.org/10.1371/journal.pone.0187824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH, Griffin RJ (2007) Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13:3395–3402. https://doi.org/10.1158/1078-0432.ccr-06-2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. du Manoir JM, Francia G, Man S, Mossoba M, Medin JA, Viloria-Petit A, Hicklin DJ, Emmenegger U, Kerbel RS (2006) Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 12:904–916. https://doi.org/10.1158/1078-0432.ccr-05-1109

    Article  PubMed  Google Scholar 

  32. Chen JL-Y, Tsai Y-C, Tsai M-H, Lee S-Y, Wei M-F, Kuo S-H, Shieh M-J (2017) Prominin-1-specific binding peptide-modified apoferritin nanoparticle carrying irinotecan as a novel radiosensitizer for colorectal cancer stem-like cells. Part Part Syst Charact 34:1600424. https://doi.org/10.1002/ppsc.201600424

    Article  CAS  Google Scholar 

  33. Li X, Zhang R, Li Z et al (2017) Contrast-enhanced ultrasound imaging quantification of adventitial vasa vasorum in a rabbit model of varying degrees of atherosclerosis. Sci Rep 7:7032. https://doi.org/10.1038/s41598-017-06127-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gates S (2020) Statistical significance and clinical evidence. Lancet Oncol 21:317–466. https://doi.org/10.1016/s1470-2045(19)30854-x

    Article  Google Scholar 

  35. Bertram JS, Janik P (1980) Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett 11:63–73. https://doi.org/10.1016/0304-3835(80)90130-5

    Article  CAS  PubMed  Google Scholar 

  36. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034. https://doi.org/10.1084/jem.192.7.1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamazaki T, Akiba H, Iwai H et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545. https://doi.org/10.4049/jimmunol.169.10.5538

    Article  CAS  PubMed  Google Scholar 

  38. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145. https://doi.org/10.1158/0008-5472.can-03-3259

    Article  CAS  PubMed  Google Scholar 

  39. van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366. https://doi.org/10.1084/jem.190.3.355

    Article  PubMed  PubMed Central  Google Scholar 

  40. Unverdorben F, Richter F, Hutt M, Seifert O, Malinge P, Fischer N, Kontermann RE (2016) Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs 8:120–128. https://doi.org/10.1080/19420862.2015.1113360

    Article  CAS  PubMed  Google Scholar 

  41. Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18:313–316. https://doi.org/10.1002/eji.1830180221

    Article  CAS  PubMed  Google Scholar 

  42. Meder L, Schuldt P, Thelen M et al (2018) Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res 78:4270–4281. https://doi.org/10.1158/0008-5472.can-17-2176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was presented in part at the Radiological Society of North America 104th Scientific Assembly and Annual Meeting (Chicago, USA, November 2019). We thank the staff of the Core Labs, Department of Medical Research, National Taiwan University Hospital, for their technical support.

Funding

This work was supported by the National Taiwan University Hospital (Grant numbers NTUH 107-N4008, 108-N4353, and 109-N4547) and the Ministry of Science and Technology (MST, Taiwan, Contract No. MST 106-2314-B-002-052-MY2).

Author information

Authors and Affiliations

Authors

Contributions

JLYC, CKP, and YLL conceived and designed the experiments. JLYC, YSH, CKP, CYT, and YLL conducted the experiments. JLYC, CKP, and CWW interpreted the results of the experiments. JLYC, YSH, CWW, and YLL drafted and edited the manuscript. SHK and MJS supervised the study. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yu-Li Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All in vivo experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC 20160399). Humane endpoints were determined according to a clinical scoring system based on that outlined by the IACUC of our institution.

Consent to participate

Not applicable.

Consent for publications

Not applicable.

Availability of data ad material

All data generated and analyzed during this study are included in this published article (and its supplementary information files).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.LY., Pan, CK., Huang, YS. et al. Evaluation of antitumor immunity by a combination treatment of high-dose irradiation, anti-PDL1, and anti-angiogenic therapy in murine lung tumors. Cancer Immunol Immunother 70, 391–404 (2021). https://doi.org/10.1007/s00262-020-02690-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02690-w

Keywords

Navigation