Skip to main content

Advertisement

Log in

Cystatin F as a regulator of immune cell cytotoxicity

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors—cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

C/EBP:

CCAAT/enhancer-binding protein

CCAAT box motif:

Cytosine–cytosine–adenosine–adenosine–thymidine box motif

CRES:

Cystatin-related epididymal spermatogenic protein

CTLs:

Cytotoxic T-lymphocytes

E64:

N-[N-(l-3-trans-Carboxyirane-2-carbonyl)-l-leucyl]-agmatine

LAMP-1:

Lysosomal-associated membrane protein 1

LPS:

Lipopolysaccharide

Mac-1:

Macrophage-1 antigen

MHC:

Major histocompatibility complex

NK cells:

Natural killer cells

poly I:C:

Polyinosinic:polycytidylic acid

RGD motif:

Arginyl-glycyl-aspartic acid motif

TLR:

Toll-like receptors

References

  1. Barrett AJ, Rawlings, Woessner JF (eds) (2012) Handbook of proteolytic enzymes, 3rd edn. Academic, San Diego

    Google Scholar 

  2. Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31(7):1630–1643. https://doi.org/10.1038/emboj.2012.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Colbert JD, Matthews SP, Miller G, Watts C (2009) Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol 39(11):2955–2965. https://doi.org/10.1002/eji.200939650

    Article  CAS  PubMed  Google Scholar 

  4. Perisic Nanut M, Sabotic J, Jewett A, Kos J (2014) Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 5:616. https://doi.org/10.3389/fimmu.2014.00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prunk M, Nanut MP, Sabotic J, Kos J (2016) Cystatins, cysteine peptidase inhibitors, as regulators of immune cell cytotoxicity. Period Biol 118:353–362. https://doi.org/10.18054/pb.v118i4.4504

    Article  Google Scholar 

  6. Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42(Database issue):D503-509. https://doi.org/10.1093/nar/gkt953

    Article  CAS  Google Scholar 

  7. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20(17):4629–4633. https://doi.org/10.1093/emboj/20.17.4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9(12):871–882. https://doi.org/10.1038/nri2671

    Article  CAS  PubMed  Google Scholar 

  9. Asagiri M, Hirai T, Kunigami T, Kamano S, Gober HJ, Okamoto K, Nishikawa K, Latz E, Golenbock DT, Aoki K, Ohya K, Imai Y, Morishita Y, Miyazono K, Kato S, Saftig P, Takayanagi H (2008) Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 319(5863):624–627. https://doi.org/10.1126/science.1150110

    Article  CAS  PubMed  Google Scholar 

  10. Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM (2011) Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med 208(4):643–651. https://doi.org/10.1084/jem.20100682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohashi K, Naruto M, Nakaki T, Sano E (2003) Identification of interleukin-8 converting enzyme as cathepsin L. Biochim Biophys Acta 1649(1):30–39

    Article  CAS  Google Scholar 

  12. Fiebiger E, Meraner P, Weber E, Fang IF, Stingl G, Ploegh H, Maurer D (2001) Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells. J Exp Med 193(8):881–892

    Article  CAS  Google Scholar 

  13. Kos J, Vizin T, Fonovic UP, Pislar A (2015) Intracellular signaling by cathepsin X: molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 31:76–83. https://doi.org/10.1016/j.semcancer.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Lechner AM, Assfalg-Machleidt I, Zahler S, Stoeckelhuber M, Machleidt W, Jochum M, Nagler DK (2006) RGD-dependent binding of procathepsin X to integrin alphavbeta3 mediates cell-adhesive properties. J Biol Chem 281(51):39588–39597. https://doi.org/10.1074/jbc.M513439200

    Article  CAS  PubMed  Google Scholar 

  15. Obermajer N, Svajger U, Bogyo M, Jeras M, Kos J (2008) Maturation of dendritic cells depends on proteolytic cleavage by cathepsin X. J Leukoc Biol 84(5):1306–1315. https://doi.org/10.1189/jlb.0508285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Obermajer N, Premzl A, Zavasnik Bergant T, Turk B, Kos J (2006) Carboxypeptidase cathepsin X mediates beta2-integrin-dependent adhesion of differentiated U-937 cells. Exp Cell Res 312(13):2515–2527. https://doi.org/10.1016/j.yexcr.2006.04.019

    Article  CAS  PubMed  Google Scholar 

  17. Jevnikar Z, Obermajer N, Bogyo M, Kos J (2008) The role of cathepsin X in the migration and invasiveness of T lymphocytes. J Cell Sci 121(Pt 16):2652–2661. https://doi.org/10.1242/jcs.023721

    Article  CAS  PubMed  Google Scholar 

  18. Sutton VR, Waterhouse NJ, Browne KA, Sedelies K, Ciccone A, Anthony D, Koskinen A, Mullbacher A, Trapani JA (2007) Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. J Cell Biol 176(4):425–433. https://doi.org/10.1083/jcb.200609077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pham CT, Ivanovich JL, Raptis SZ, Zehnbauer B, Ley TJ (2004) Papillon-Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol 173(12):7277–7281

    Article  CAS  Google Scholar 

  20. D’Angelo ME, Bird PI, Peters C, Reinheckel T, Trapani JA, Sutton VR (2010) Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem 285(27):20514–20519. https://doi.org/10.1074/jbc.M109.094573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. House IG, House CM, Brennan AJ, Gilan O, Dawson MA, Whisstock JC, Law RH, Trapani JA, Voskoboinik I (2017) Regulation of perforin activation and pre-synaptic toxicity through C-terminal glycosylation. EMBO Rep 18(10):1775–1785. https://doi.org/10.15252/embr.201744351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Konjar S, Sutton VR, Hoves S, Repnik U, Yagita H, Reinheckel T, Peters C, Turk V, Turk B, Trapani JA, Kopitar-Jerala N (2010) Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology 131(2):257–267. https://doi.org/10.1111/j.1365-2567.2010.03299.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zavasnik-Bergant T (2008) Cystatin protease inhibitors and immune functions. Front Biosci 13:4625–4637. https://doi.org/10.2741/3028

    Article  CAS  PubMed  Google Scholar 

  24. Scharfstein J, Schmitz V, Svensjo E, Granato A, Monteiro AC (2007) Kininogens coordinate adaptive immunity through the proteolytic release of bradykinin, an endogenous danger signal driving dendritic cell maturation. Scand J Immunol 66(2–3):128–136. https://doi.org/10.1111/j.1365-3083.2007.01983.x

    Article  CAS  PubMed  Google Scholar 

  25. Alvarez-Fernandez M, Barrett AJ, Gerhartz B, Dando PM, Ni J, Abrahamson M (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 274(27):19195–19203

    Article  CAS  Google Scholar 

  26. Sokol JP, Schiemann WP (2004) Cystatin C antagonizes transforming growth factor beta signaling in normal and cancer cells. Mol Cancer Res 2(3):183–195

    CAS  PubMed  Google Scholar 

  27. Hashimoto SI, Suzuki T, Nagai S, Yamashita T, Toyoda N, Matsushima K (2000) Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression. Blood 96(6):2206–2214

    CAS  PubMed  Google Scholar 

  28. Zavasnik-Bergant T, Repnik U, Schweiger A, Romih R, Jeras M, Turk V, Kos J (2005) Differentiation- and maturation-dependent content, localization, and secretion of cystatin C in human dendritic cells. J Leukoc Biol 78(1):122–134. https://doi.org/10.1189/jlb.0804451

    Article  CAS  PubMed  Google Scholar 

  29. El-Sukkari D, Wilson NS, Hakansson K, Steptoe RJ, Grubb A, Shortman K, Villadangos JA (2003) The protease inhibitor cystatin C is differentially expressed among dendritic cell populations, but does not control antigen presentation. J Immunol 171:5003–5011. https://doi.org/10.4049/jimmunol.171.10.5003

    Article  CAS  PubMed  Google Scholar 

  30. Nathanson CM, Wasselius J, Wallin H, Abrahamson M (2002) Regulated expression and intracellular localization of cystatin F in human U937 cells. Eur J Biochem 269(22):5502–5511. https://doi.org/10.1046/j.1432-1033.2002.03252.x

    Article  CAS  PubMed  Google Scholar 

  31. Colbert JD, Plechanovova A, Watts C (2009) Glycosylation directs targeting and activation of cystatin f from intracellular and extracellular sources. Traffic 10(4):425–437. https://doi.org/10.1111/j.1600-0854.2009.00881.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langerholc T, Zavasnik-Bergant V, Turk B, Turk V, Abrahamson M, Kos J (2005) Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J 272(6):1535–1545. https://doi.org/10.1111/j.1742-4658.2005.04594.x

    Article  CAS  PubMed  Google Scholar 

  33. Ni J, Fernandez MA, Danielsson L, Chillakuru RA, Zhang J, Grubb A, Su J, Gentz R, Abrahamson M (1998) Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J Biol Chem 273(38):24797–24804

    Article  CAS  Google Scholar 

  34. Magister S, Obermajer N, Mirkovic B, Svajger U, Renko M, Softic A, Romih R, Colbert JD, Watts C, Kos J (2012) Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells. Eur J Cell Biol 91(5):391–401. https://doi.org/10.1016/j.ejcb.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  35. Hamilton G, Colbert JD, Schuettelkopf AW, Watts C (2008) Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis. EMBO J 27(3):499–508. https://doi.org/10.1038/sj.emboj.7601979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alvarez-Fernandez M, Liang YH, Abrahamson M, Su XD (2005) Crystal structure of human cystatin D, a cysteine peptidase inhibitor with restricted inhibition profile. J Biol Chem 280(18):18221–18228. https://doi.org/10.1074/jbc.M411914200

    Article  CAS  PubMed  Google Scholar 

  37. Rasanen O, Jarvinen M, Rinne A (1978) Localization of the human SH-protease inhibitor in the epidermis. Immunofluorescent studies. Acta Histochem 63(2):193–196. https://doi.org/10.1016/S0065-1281(78)80025-7

    Article  CAS  PubMed  Google Scholar 

  38. Brzin J, Kopitar M, Turk V, Machleidt W (1983) Protein inhibitors of cysteine proteinases.1. Isolation and characterization of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes. Hoppe Seylers Z Physiol Chem 364:1475–1480. https://doi.org/10.1515/bchm2.1983.364.2.1475

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki T, Hashimoto S-i, Toyoda N, Nagai S, Yamazaki N, Dong H-Y, Sakai J, Yamashita T, Nukiwa T, Matsushima K (2000) Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood 96:2584–2591

    CAS  PubMed  Google Scholar 

  40. Freije JP, Balbin M, Abrahamson M, Velasco G, Dalboge H, Grubb A, Lopez-Otin C (1993) Human cystatin D. cDNA cloning, characterization of the Escherichia coli expressed inhibitor, and identification of the native protein in saliva. J Biol Chem 268(21):15737–15744

    CAS  PubMed  Google Scholar 

  41. Stoka V, Nycander M, Lenarcic B, Labriola C, Cazzulo JJ, Bjork I, Turk V (1995) Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily. FEBS Lett 370(1–2):101–104

    Article  CAS  Google Scholar 

  42. Teran LM, Ruggeberg S, Santiago J, Fuentes-Arenas F, Hernandez JL, Montes-Vizuet AR, Xinping L, Franz T (2012) Immune response to seasonal influenza A virus infection: a proteomic approach. Arch Med Res 43(6):464–469. https://doi.org/10.1016/j.arcmed.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  43. Gu M, Haraszthy GG, Collins AR, Bergey EJ (1995) Identification of salivary proteins inhibiting herpes simplex virus 1 replication. Oral Microbiol Immun 10:54–59. https://doi.org/10.1111/j.1399-302X.1995.tb00118.x

    Article  CAS  Google Scholar 

  44. Bjorck L, Grubb A, Kjellen L (1990) Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J Virol 64(2):941–943

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Matthews SP, McMillan SJ, Colbert JD, Lawrence RA, Watts C (2016) Cystatin F ensures eosinophil survival by regulating granule biogenesis. Immunity 44(4):795–806. https://doi.org/10.1016/j.immuni.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lertnawapan R, Bian A, Rho YH, Raggi P, Oeser A, Solus JF, Gebretsadik T, Shintani A, Stein CM (2012) Cystatin C is associated with inflammation but not atherosclerosis in systemic lupus erythematosus. Lupus 21(3):279–287. https://doi.org/10.1177/0961203311425527

    Article  CAS  PubMed  Google Scholar 

  47. Zhang M, Li Y, Yang X, Shan H, Zhang Q, Ming Z, Xie Y, Chen H, Liu Y, Zhang J (2016) Serum cystatin C as an inflammatory marker in exacerbated and convalescent COPD patients. Inflammation 39(2):625–631. https://doi.org/10.1007/s10753-015-0287-x

    Article  CAS  PubMed  Google Scholar 

  48. Werle B, Sauckel K, Nathanson CM, Bjarnadottir M, Spiess E, Ebert W, Abrahamson M (2003) Cystatins C, E/M and F in human pleural fluids of patients with neoplastic and inflammatory lung disorders. Biol Chem 384(2):281–287. https://doi.org/10.1515/BC.2003.031

    Article  CAS  PubMed  Google Scholar 

  49. Page LJ, Darmon AJ, Uellner R, Griffiths GM (1998) L is for lytic granules: lysosomes that kill. Biochim Biophys Acta 1401(2):146–156

    Article  CAS  Google Scholar 

  50. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2(10):735–747. https://doi.org/10.1038/nri911

    Article  CAS  PubMed  Google Scholar 

  51. Andersen MH, Schrama D, Thor Straten P, Becker JC (2006) Cytotoxic T cells. J Invest Dermatol 126(1):32–41. https://doi.org/10.1038/sj.jid.5700001

    Article  CAS  PubMed  Google Scholar 

  52. Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26:389–420. https://doi.org/10.1146/annurev.immunol.26.021607.090404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uellner R, Zvelebil MF, Hopkins J, Jones J, MacDougall LK, Griffiths GM, Morgan BP, Podack E, Waterfield MD (1997) Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J 16(24):7287–7296. https://doi.org/10.1093/emboj/16.24.7287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Halfon S, Ford J, Foster J, Dowling L, Lucian L, Sterling M, Xu Y, Weiss M, Ikeda M, Liggett D, Helms A, Caux C, Lebecque S, Hannum C, Menon S, McClanahan T, Gorman D, Zurawski G (1998) Leukocystatin, a new Class II cystatin expressed selectively by hematopoietic cells. J Biol Chem 273(26):16400–16408. https://doi.org/10.1074/jbc.273.26.16400

    Article  CAS  PubMed  Google Scholar 

  55. Obata-Onai A, Hashimoto S, Onai N, Kurachi M, Nagai S, Shizuno K, Nagahata T, Mathushima K (2002) Comprehensive gene expression analysis of human NK cells and CD8(+) T lymphocytes. Int Immunol 14:1085–1098. https://doi.org/10.1093/intimm/dxf086

    Article  CAS  PubMed  Google Scholar 

  56. Maher K, Konjar S, Watts C, Turk B, Kopitar-Jerala N (2014) Cystatin F regulates proteinase activity in IL-2-activated natural killer cells. Protein Pept Lett 21(9):957–965. https://doi.org/10.2174/0929866521666140403124146

    Article  CAS  PubMed  Google Scholar 

  57. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45(3):227–232. https://doi.org/10.1016/j.ymeth.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  58. Magister S, Tseng HC, Bui VT, Kos J, Jewett A (2015) Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F. Oncotarget 6(26):22310–22327. https://doi.org/10.18632/oncotarget.4208

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jewett A, Man YG, Cacalano N, Kos J, Tseng HC (2014) Natural killer cells as effectors of selection and differentiation of stem cells: role in resolution of inflammation. J Immunotoxicol 11(4):297–307. https://doi.org/10.3109/1547691X.2013.877104

    Article  CAS  PubMed  Google Scholar 

  60. Perisic Nanut M, Sabotic J, Svajger U, Jewett A, Kos J (2017) Cystatin F affects natural killer cell cytotoxicity. Front Immunol 8:1459. https://doi.org/10.3389/fimmu.2017.01459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kos J, Perisic Nanut M, Prunk M, Sabotic J, Jakoš T, Jewett A (2017) Tumor cell derived cystatin F as mediator of NK and T cell cytotoxicity. Presented at 42nd Congress of the Federation of European Biochemical Societies (FEBS), “From Molecules to Cells and Back” Jerusalem, Israel; September 10–14, 2017. FEBS J 284:4.1–051. https://doi.org/10.1111/febs.14174 (Poster)

    Article  CAS  Google Scholar 

  62. Poli V, Mancini FP, Cortese R (1990) IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63(3):643–653

    Article  CAS  Google Scholar 

  63. Chan CB, Abe M, Hashimoto N, Hao C, Williams IR, Liu X, Nakao S, Yamamoto A, Zheng C, Henter JI, Meeths M, Nordenskjold M, Li SY, Hara-Nishimura I, Asano M, Ye K (2009) Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome. Proc Natl Acad Sci USA 106(2):468–473. https://doi.org/10.1073/pnas.0809824105

    Article  PubMed  Google Scholar 

  64. Utsunomiya T, Hara Y, Kataoka A, Morita M, Arakawa H, Mori M, Nishimura S (2002) Cystatin-like metastasis-associated protein mRNA expression in human colorectal cancer is associated with both liver metastasis and patient survival. Clin Cancer Res 8(8):2591–2594

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Roger H. Pain for critical reading of the manuscript.

Funding

This work was supported by the Grants P4-0127 and J4 6811 from the Research Agency of the Republic of Slovenia (to Janko Kos).

Author information

Authors and Affiliations

Authors

Contributions

MP, MPN and ED drafted the manuscript. MPN and MP designed the figures. JK finalized the manuscript in consultation with JS and AJ.

Corresponding author

Correspondence to Janko Kos.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kos, J., Nanut, M.P., Prunk, M. et al. Cystatin F as a regulator of immune cell cytotoxicity. Cancer Immunol Immunother 67, 1931–1938 (2018). https://doi.org/10.1007/s00262-018-2165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2165-5

Keywords

Navigation