Skip to main content

Advertisement

Log in

Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and antitumor effects

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We recently demonstrated that Venezuelan equine encephalitis virus-based replicon particle (VRPs) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP-expressing interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and antitumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)), and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12, and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP-IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing antitumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than that of VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang S, Kittlesen D, Slingluff CL, Vervaert CE, Seigler HF, Darrow TL (2000) Dendritic cells infected with a vaccinia vector carrying the human gp100 gene simultaneously present multiple specificities and elicit high affinity T cells reactive to multiple epitopes and restricted by HLA-A2 and -A3. J. Immunol 164:4204–4211

    PubMed  CAS  Google Scholar 

  2. zum Büschenfelde CM, Metzger J, Hermann C, Nicklisch N, Peschel C, Bernhard H (2001) The generation of both T killer and Th cell clones specific for the tumor-associated antigen HER2 using retrovirally transduced dendritic cells. J Immunol 167:1712–1719

    Google Scholar 

  3. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  4. Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE et al (2003) Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424:324–328

    Article  PubMed  CAS  Google Scholar 

  5. Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239:389–401

    Article  PubMed  CAS  Google Scholar 

  6. Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA et al (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71:3031–3038

    PubMed  CAS  Google Scholar 

  7. MacDonald GH, Johnston RE (2000) Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 74:914–922

    Article  PubMed  CAS  Google Scholar 

  8. Moran TP, Collier M, McKinnon KP, Davis NL, Johnston RE, Serody JS (2005) A novel viral system for generating antigen-specific T cells. J Immunol 175:3431–3438

    PubMed  CAS  Google Scholar 

  9. Gardner JP, Frolov I, Perri S, Ji Y, MacKichan ML, zur Megede J et al (2000) Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J Virol 74:11849–11857

    Article  PubMed  CAS  Google Scholar 

  10. Mazzoni A, Segal DM (2004) Controlling the Toll road to dendritic cell polarization. J Leukoc Biol 75:721–730

    Article  PubMed  CAS  Google Scholar 

  11. Morse MA, Hobeika A, Osada T, Berglund P, Negri S, Niedzwiecki D et al (2010) A novel recombinant alphaviral vector breaks tolerance to self-antigen in the setting of elevated regulatory T cells. J Clin Invest 120:3234–3241

    Article  PubMed  CAS  Google Scholar 

  12. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

    Article  PubMed  CAS  Google Scholar 

  13. Trinchieri G (1998) Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol 16:365–396

    Article  PubMed  CAS  Google Scholar 

  14. Robbins PF, Kantor JA, Salgaller M, Hand PH, Fernsten PD, Schlom J (1991) Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res 51:3657–3662

    PubMed  CAS  Google Scholar 

  15. Talarico T, Maughan M, Pancorbo B, Ruiz J, Graham A (2006) Development and manufacture of alphavaccines. Bioprocessing Fall:8–14

  16. Hubby B, Talarico T, Maughan M, Reap EA, Berglund P, Kamrud KI et al (2007) Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 25:8180–8189

    Article  PubMed  CAS  Google Scholar 

  17. Mosca PJ, Hobeika AC, Clay TM, Nair SK, Thomas EK, Morse MA et al (2000) A subset of human monocyte-derived dendritic cells expresses high levels of interleukin-12 in response to combined CD40 ligand and interferon-gamma treatment. Blood 96:3499–3504

    PubMed  CAS  Google Scholar 

  18. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  PubMed  CAS  Google Scholar 

  19. Robertson MJ, Soiffer RJ, Wolf SF, Manley TJ, Donahue C, Young D et al (1992) Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med 175:779–788

    Article  PubMed  CAS  Google Scholar 

  20. Grufman P, Kärre K (2000) Innate and adaptive immunity to tumors: IL-12 is required for optimal responses. Eur J Immunol 30:1088–1093

    Article  PubMed  CAS  Google Scholar 

  21. Gherardi MM, Ramírez JC, Esteban M (2001) Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime-booster vaccination regimens. Histol Histopathol 16:655–667

    PubMed  CAS  Google Scholar 

  22. Little RF, Pluda JM, Wyvill KM, Rodriguez-Chavez IR, Tosato G, Catanzaro AT et al (2006) Activity of subcutaneous interleukin-12 in AIDS-related Kaposi sarcoma. Blood 107:4650–4657

    Article  PubMed  CAS  Google Scholar 

  23. Lenzi R, Rosenblum M, Verschraegen C, Kudelka AP, Kavanagh JJ, Hicks ME et al (2002) Phase I study of intraperitoneal recombinant human interleukin 12 in patients with Müllerian carcinoma, gastrointestinal primary malignancies, and mesothelioma. Clin Cancer Res 8:3686–3695

    PubMed  CAS  Google Scholar 

  24. Younes A, Pro B, Robertson MJ, Flinn IW, Romaguera JE, Hagemeister F et al (2004) Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin Cancer Res 10:5432–5438

    Article  PubMed  CAS  Google Scholar 

  25. Robertson MJ, Pelloso D, Abonour R, Hromas RA, Nelson RP Jr, Wood L et al (2002) Interleukin 12 immunotherapy after autologous stem cell transplantation for hematological malignancies. Clin Cancer Res 8:3383–3393

    PubMed  CAS  Google Scholar 

  26. Peeva E, Fishman AD, Goddard G, Wadler S, Barland P (2000) Rheumatoid arthritis exacerbation caused by exogenous interleukin-12. Arthritis Rheum 43:461–463

    Article  PubMed  CAS  Google Scholar 

  27. Wadler S, Levy D, Frederickson HL, Falkson CI, Wang Y, Weller E et al (2004) A phase II trial of interleukin-12 in patients with advanced cervical cancer: clinical and immunologic correlates. Eastern Cooperative Oncology Group study E1E96. Gynecol Oncol 92:957–964

    Article  PubMed  CAS  Google Scholar 

  28. Ansell SM, Witzig TE, Kurtin PJ, Sloan JA, Jelinek DF, Howell KG et al (2002) Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood 99:67–74

    Article  PubMed  CAS  Google Scholar 

  29. Parihar R, Nadella P, Lewis A, Jensen R, De Hoff C, Dierksheide JE et al (2004) A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: analysis of sustained interferon gamma production in a subset of patients. Clin Cancer Res 10:5027–5037

    Article  PubMed  CAS  Google Scholar 

  30. Eisenbeis CF, Lesinski GB, Anghelina M, Parihar R, Valentino D, Liu J et al (2005) Phase I study of the sequential combination of interleukin-12 and interferon alfa-2b in advanced cancer: evidence for modulation of interferon signaling pathways by interleukin-12. J Clin Oncol 23:8835–8844

    Article  PubMed  CAS  Google Scholar 

  31. Alatrash G, Hutson TE, Molto L, Richmond A, Nemec C, Mekhail T et al (2004) Clinical and immunologic effects of subcutaneously administered interleukin-12 and interferon alfa-2b: phase I trial of patients with metastatic renal cell carcinoma or malignant melanoma. J Clin Oncol 22:2891–2900

    Article  PubMed  CAS  Google Scholar 

  32. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL et al (1999) Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 163:1690–1695

    PubMed  CAS  Google Scholar 

  33. Hamid O, Solomon JC, Scotland R, Garcia M, Sian S, Ye W et al (2007) Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin Cancer Res 13:215–222

    Article  PubMed  CAS  Google Scholar 

  34. Peterson AC, Harlin H, Gajewski TF (2003) Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21:2342–2348

    Article  PubMed  CAS  Google Scholar 

  35. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB et al (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90:2541–2548

    PubMed  CAS  Google Scholar 

  36. Rakhit A, Yeon MM, Ferrante J, Fettner S, Nadeau R, Motzer R et al (1999) Down-regulation of the pharmacokinetic-pharmacodynamic response to interleukin-12 during long-term administration to patients with renal cell carcinoma and evaluation of the mechanism of this “adaptive response” in mice. Clin Pharmacol Ther 65:615–629

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Peter Berglund, Bolyn Hubby, Whitney Lewis, and Jonathan Smith were previously employed by Alphavax,Inc. Takuya Osada, Michael A. Morse, Donna Niedzwiecki, Xiao Yi Yang, Amy Hobeika, Bruce Burnett, Gayathri R. Devi, Timothy M. Clay, and H. Kim Lyerly have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kim Lyerly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osada, T., Berglund, P., Morse, M.A. et al. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and antitumor effects. Cancer Immunol Immunother 61, 1941–1951 (2012). https://doi.org/10.1007/s00262-012-1248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1248-y

Keywords

Navigation