Skip to main content

Advertisement

Log in

Rapid accumulation of adoptively transferred CD8+ T cells at the tumor site is associated with long-term control of SV40 T antigen-induced tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We previously established a model to study CD8+ T cell (TCD8)-based adoptive immunotherapy of cancer using line SV11 mice that develop choroid plexus tumors in the brain due to transgenic expression of Simian Virus 40 large T antigen (Tag). These mice are tolerant to the three dominant TCD8-recognized Tag epitopes I, II/III and IV. However, adoptive transfer of spleen cells from naïve C57BL/6 (B6) mice prolongs SV11 survival following TCD8 priming against the endogenous Tag epitope IV. In addition, survival of SV11 mice is dramatically increased following transfer of lymphocytes from Tag-immune B6 mice. In the current study, we compared the kinetics and magnitude of Tag-specific TCD8 accumulation at the tumor site following adoptive transfer with a high dose of either Tag-immune or naïve donor cells or decreasing doses of Tag-immune lymphocytes. Following adoptive transfer of Tag-immune cells, epitope I- and IV-specific TCD8 accumulated to high levels in the brain of SV11 mice, peaking at 5–7 days, while epitope IV-specific TCD8 derived from naïve donors required three weeks to achieve peak levels. A similar delay in the peak of epitope IV-specific TCD8 accumulation was observed when tenfold fewer Tag-immune donor cells were administered, reducing control of tumor progression. These results suggest that efficient and prolonged control of established autochthonous tumors is associated with high-level early accumulation of adoptively transferred T cells. We also provide evidence that although multiple specificities are represented in the Tag immune donor lymphocytes, epitope IV-specific donor TCD8 play a predominant role in control of tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303

    Article  PubMed  CAS  Google Scholar 

  2. Sibille C, Chomez P, Wildmann C, Van Pel A, De Plaen E, Maryanski JL de Bergeyck V, Boon T (1990) Structure of the gene of tum- transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 172:35–45

    Article  PubMed  CAS  Google Scholar 

  3. Gaugler B, Van den Eynde B, van der Burggen P, Romero P, Gaforio JJ, De Plaen E, Lethe B, Brasseur F, Boon T (1994) Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179:921–930

    Article  PubMed  CAS  Google Scholar 

  4. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ (1995) Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 92:432–436

    Article  PubMed  CAS  Google Scholar 

  5. Kast WM, Offringa R, Peters PJ, Voodrdouw AC, Meloen RH, van der Eb AJ, Melief CJ (1989) Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59:603–614

    Article  PubMed  CAS  Google Scholar 

  6. Klarnet JP, Kern DE, Okuno K, Holt C, Lilly F, Greenberg PD (1989) FBL-reactive CD8+ cytotoxic and CD4+ helper T lymphocytes recognize distinct Friend murine leukemia virus-encoded antigens. J Exp Med 169:457–467

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka Y, Tevethia MJ, Kalderon D, Smith AE, Tevethia SS (1988) Clustering of antigenic sites recognized by cytotoxic T lymphocyte clones in the amino terminal half of SV40 T antigen. Virology 162:427–436

    Article  PubMed  CAS  Google Scholar 

  8. Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:837–851

    Article  PubMed  CAS  Google Scholar 

  9. Hinrichs CS, Gattioni L, Restifo NP (2006) Programming CD8+ T cells for effective immunotherapy. Curr Opin Immunol 18:363–370

    Article  PubMed  CAS  Google Scholar 

  10. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393

    Article  PubMed  CAS  Google Scholar 

  11. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry RM, Marincola FM, Leitman SF, White DE, Rosenberg SA (2002) A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 25:243–251

    Article  PubMed  CAS  Google Scholar 

  12. Dunn PL, North RJ (1991) Selective radiation resistance of immunologically induced T cells as the basis for irradiation-induced T-cell-mediated regression of immunogenic tumor. J Leukoc Biol 49:388–396

    PubMed  CAS  Google Scholar 

  13. Schell TD, Tevethia SS (2001) Control of advanced choroid plexus tumors in SV40 T antigen transgenic mice following priming of donor CD8(+) T lymphocytes by the endogenous tumor antigen. J Immunol 167:6947–6956

    PubMed  CAS  Google Scholar 

  14. Wang LX, Kjaergaard J, Cohen PA, Shu S, Plautz GE (2004) Memory T cells originate from adoptively transferred effectors and reconstituting host cells after sequential lymphodepletion and adoptive immunotherapy. J Immunol 172:3462–3468

    PubMed  CAS  Google Scholar 

  15. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523

    PubMed  CAS  Google Scholar 

  16. Gattinoni LS, Finkelstein E, Klebanoff CA, Antony PA, Palmer DC, Speiss PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912

    Article  PubMed  CAS  Google Scholar 

  17. Reits EA, Hodge JW, Herberts CA, Groothius TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  PubMed  CAS  Google Scholar 

  18. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  PubMed  CAS  Google Scholar 

  19. Gattinoni L, Klebanoff CA, Palmer DC, Wrzensinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626

    Article  PubMed  CAS  Google Scholar 

  20. Sussman JJ, Parihar R, Winstead K, Finkelman FD (2004) Prolonged culture of vaccine-primed lymphocytes results in decreased antitumor killing and change in cytokine secretion. Cancer Res 64:9124–9130

    Article  PubMed  CAS  Google Scholar 

  21. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  PubMed  CAS  Google Scholar 

  22. Van Dyke T, Finlay C, Levine AJ (1985) A comparison of several lines of transgenic mice containing the SV40 early genes. Cold Spring Harb Symp Quant Biol 50:671–678

    PubMed  Google Scholar 

  23. Schell TD, Mylin LM, Georgoff I, Teresky AK, Levine AJ, Tevethia SS (1999) Cytotoxic T-lymphocyte epitope immunodominance in the control of choroid plexus tumors in simian virus 40 large T antigen transgenic mice. J Virol 73:5981–5993

    PubMed  CAS  Google Scholar 

  24. Mylin LM, Bonneau RH, Lippolis JD, Tevethia SS (1995) Hierarchy among multiple H-2b-restricted cytotoxic T-lymphocyte epitopes within simian virus 40 T antigen. J Virol 69:6665–6677

    PubMed  CAS  Google Scholar 

  25. Ryan CM, Schell TD (2006) Accumulation of CD8+ T cells in advanced-stage tumors and delay of disease progression following secondary immunization against an immunorecessive epitope. J Immunol 177:255–267

    PubMed  CAS  Google Scholar 

  26. Palmiter RD, Chen HY, Messing A, Brinster RL (1985) SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice. Nature 316:457–460

    Article  PubMed  CAS  Google Scholar 

  27. Pretell J, Greenfield RS, Tevethia SS (1979) Biology of simian virus 40 (SV40) transplantation antigen (TrAg). V in vitro demonstration of SV40 TrAg in SV40 infected nonpermissive mouse cells by the lymphocyte mediated cytotoxicity assay. Virology 97:32–41

    Article  PubMed  CAS  Google Scholar 

  28. Mylin LM, Deckhut AM, Bonneau RH, Kierstead TD, Tevethia MJ, Simmons DT, Tevethia SS (1995) Cytotoxic T lymphocyte escape variants, induced mutations, and synthetic peptides define a dominant H-2Kb-restricted determinant in simian virus 40 tumor antigen. Virology 208:159–172

    Article  PubMed  CAS  Google Scholar 

  29. Deckhut AM, Lippolis JD, Tevethia SS (1992) Comparative analysis of core amino acid residues of H-2D(b)-restricted cytotoxic T-lymphocyte recognition epitopes in simian virus 40 T antigen. J Virol 66:440–447

    PubMed  CAS  Google Scholar 

  30. Bonneau RH, Salvucci LA, Johnson DC, Tevethia SS (1993) Epitope specificity of H-2Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 195:62–70

    Article  PubMed  CAS  Google Scholar 

  31. Schell TD, Tevethia SS (2001) Cytotoxic T lymphocytes in SV40 infections. Methods Mol Biol 165:243–256

    PubMed  CAS  Google Scholar 

  32. Mylin LM, Schell TD, Roberts D, Epler M, Boesteanu A, Collins EJ, Frelinger JA, Joyce S, Tevethia SS (2000) Quantitation of CD8(+) T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 74:6922–6934

    Article  PubMed  CAS  Google Scholar 

  33. Staveley-O’Carroll K, Schell TD, Jimenez M, Mylin LM, Tevethia MJ, Schoenberger SP, Tevethia SS (2003) In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes CD8+ T cell effector function in SV40 T antigen transgenic mice. J Immunol 171:697–707

    PubMed  CAS  Google Scholar 

  34. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28:258–267

    Article  PubMed  CAS  Google Scholar 

  35. Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28:53–62

    Article  PubMed  Google Scholar 

  36. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173:7125–7130

    PubMed  CAS  Google Scholar 

  37. Wang LX, Li R, Yang G, Lim M, O’Hara A, Chu Y, Fox BA, Restifo NP, Urba WJ, Hu HM (2005) Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res 65:10569–10577

    Article  PubMed  CAS  Google Scholar 

  38. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  39. Kagamu H, Touhalisky JE, Plautz GE, Krauss JC, Shu S (1996) Isolation based on l-selectin expression of immune effector T cells derived from tumor-draining lymph nodes. Cancer Res 56:4338–4342

    PubMed  CAS  Google Scholar 

  40. North RJ (1984) Gamma-irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells. Cancer Immunol Immunother 16:175–181

    Article  PubMed  CAS  Google Scholar 

  41. Wang LX, Shu S, Plautz GE (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65:9547–9554

    Article  PubMed  CAS  Google Scholar 

  42. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117

    Article  PubMed  CAS  Google Scholar 

  43. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601

    PubMed  CAS  Google Scholar 

  44. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA, Kranz DM, Schreiber H (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55

    Article  PubMed  CAS  Google Scholar 

  45. Blohm U, Potthoff D, van der Kogel AJ, Pircher H (2006) Solid tumors “melt” from the inside after successful CD8 T cell attack. Eur J Immunol 36:468–477

    Article  PubMed  CAS  Google Scholar 

  46. Hwang LN, Yu Z, Palmer DC, Restifo JP (2006) The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res 66:1132–1138

    Article  PubMed  CAS  Google Scholar 

  47. Van Dyke TA, Finaly C, Miller D, Marks J, Lozano G, Levine AF (1987) Relationship between simian virus 40 large tumor antigen expression and tumor formation in transgenic mice. J Virol 61:2029–2032

    PubMed  Google Scholar 

  48. Chakraborty M, Abrams Si, Camphausen K, Liu K, Scott T, Coleman CN, Hodge JW (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170:6338–6347

    PubMed  CAS  Google Scholar 

  49. Schell TD (2004) In vivo expansion of the residual tumor antigen-specific CD8+ T lymphocytes that survive negative selection in simian virus 40 T-antigen-transgenic mice. J Virol 78:1751–1762

    Article  PubMed  CAS  Google Scholar 

  50. Liu Y, Daley S, Evdokimova VN, Zdobinski DD, Potter DM, Butterfield LH (2006) Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J Immunol 177:712–721

    PubMed  CAS  Google Scholar 

  51. Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF (2004) T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J Immunol 172:6057–6064

    PubMed  CAS  Google Scholar 

  52. Schumacher TN (2002) T-cell-receptor gene therapy. Nat Rev Immunol 2:512–519

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Melanie Epler and Jeremy Haley for excellent technical support and Nate Sheaffer from the Flow Cytometric Core Facility of the M.S. Hershey Medical Center for assistance with flow cytometry. This work was supported by CA25000 from the National Cancer Institute/National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Schell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yorty, J.L., Tevethia, S.S. & Schell, T.D. Rapid accumulation of adoptively transferred CD8+ T cells at the tumor site is associated with long-term control of SV40 T antigen-induced tumors. Cancer Immunol Immunother 57, 883–895 (2008). https://doi.org/10.1007/s00262-007-0424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0424-y

Keywords

Navigation