Skip to main content
Log in

Acquisition of multidrug resistance by L1210 leukemia cells decreases their tumorigenicity and enhances their susceptibility to the host immune response

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The use of antineoplastic drugs for cancer treatment is frequently associated with the acquisition of a multidrug-resistant (MDR) phenotype that renders tumoural cells insensitive to antineoplastics. It remains elusive whether the acquisition of the MDR phenotype alters immunological parameters that could influence the cell sensitivity to an eventual host immune response. We report that immunisation of syngeneic mice with γ-irradiated L1210S (parental line) and L1210R (MDR phenotype) cells results in a significant rejection of subsequently implanted L1210R-based tumours, but not of the L1210S ones. Notably, L1210R tumours display a twofold reduction in vivo proliferative capacity and are less aggressive in terms of mouse survival than their sensitive counterparts. Also, analysis of surface expression of molecules involved in antigen presentation and cytokine activity revealed a slight increase in IFN-γ receptor expression, a decrease of Fas molecule, and a fourfold up-regulation of MHC class I molecules in L1210R cells. Nonetheless, both cell lines were able to induce a cytotoxic response in syngeneic mice and were equally susceptible to cytotoxicity by splenic cells. Together, these findings indicate that acquisition of drug resistance by L1210 cells is accompanied by pleiotropic changes that result in reduced tumour proliferative capacity and tumorigenicity in syngeneic mice. Hence, immunological studies of MDR tumours may assist in the design of specific therapeutic strategies that complement current chemotherapy treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361

    Article  CAS  PubMed  Google Scholar 

  2. Azuma E, Masuda S, Qi J, Kumamoto T, Hirayama M, Nagai M, Hiratake S, Umemoto M, Komada Y, Sakurai M (1997) Cytotoxic T-lymphocytes recognizing P-glycoprotein in murine multidrug-resistant leukemias. Eur J Haematol 59(1):14

    CAS  PubMed  Google Scholar 

  3. Bellamy WT (1996) P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 36:161

    CAS  PubMed  Google Scholar 

  4. Bradley M, Zeytun A, Rafi-Janajreh A, Nagarkatti PS, Nagarkatti M (1998) Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas+ and Fas− tumor cells. Blood 92(11):4248

    CAS  PubMed  Google Scholar 

  5. Cao X, Chen G, He L, Zhan W, Yu Y, Wang J (1997) Involvement of MHC class I molecule and ICAM-I in the enhancement of adhesion and cytotoxic susceptibility to immune effector cells of tumor cells transfected with the interleukin (IL)-2, IL-4 or IL-6 gene. J Cancer Res Clin Oncol 123:602

    CAS  PubMed  Google Scholar 

  6. Castro-Galache MD, Ferragut JA, Barbera VM, Martin-Orozco E, Gonzalez-Ros JM, Garcia-Morales P, Saceda M (2003) Susceptibility of multidrug resistance tumor cells to apoptosis induction by histone deacetylase inhibitors. Int J Cancer 104(5):579

    CAS  PubMed  Google Scholar 

  7. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D (2000) Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60:4403

    CAS  PubMed  Google Scholar 

  8. Cullen K, Davey R, Davey M (2001) The drug resistance proteins, multidrug resistance-associated protein and P-glycoprotein, do not confer resistance to Fas-induced cell death. Cytometry 43(3):189

    CAS  PubMed  Google Scholar 

  9. Cullen KV, Davey RA, Davey MW (2001) Drug resistance does not correlate with resistance to Fas-mediated apoptosis. Leuk Res 25(1):69

    CAS  PubMed  Google Scholar 

  10. Fichtner I, Stein U, Hoffmann J, Winterfeld G, Pfeil D, Hentschel M (1994) Characterization of four drug-resistant P388 sublines: resistance/sensitivity in vivo, resistance and proliferation markers, immunogenicity. Anticancer Res 14(5A):1995

    CAS  PubMed  Google Scholar 

  11. Fuji H, Murakami MJ (1983) Differential tumour immunogenicity of DBA/2 mouse lymphoma L1210 and its sublines, III: control of host resistance to drug-resistant L1210 sublines by H-2-linked and non-H-2-linked genes. J Natl Cancer Inst 70(1):119

    CAS  PubMed  Google Scholar 

  12. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615

    CAS  PubMed  Google Scholar 

  13. Izquierdo MA, Neefjes JJ, Mathari AE, Flens MJ, Scheffer GL, Scheper RJ (1996) Overexpression of the ABC transporter TAP in multidrug-resistant human cancer cell lines. Br J Cancer 74(12):1961

    CAS  PubMed  Google Scholar 

  14. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153

    CAS  PubMed  Google Scholar 

  15. Labroille G, Dumain P, Lacombe F, Belloc F (2000) Flow cytometric evaluation of fas expression in relation to response and resistance to anthracyclines in leukemic cells. Cytometry 39(3):195

    CAS  PubMed  Google Scholar 

  16. Landowski TH, Gleason-Guzman MC, Dalton WS (1997) Selection for drug resistance results in resistance to Fas-mediated apoptosis. Blood 89(6):1854

    CAS  PubMed  Google Scholar 

  17. Laurent G, Jaffrézou JP (2001) Signaling pathways activated by daunorubicin. Blood 98:913

    CAS  PubMed  Google Scholar 

  18. Ogasawara J, Watanabe-Fukunage R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806

    Article  CAS  PubMed  Google Scholar 

  19. Puddu P, Fais S, Luciani F, Gherardi G, Dupuis ML, Romagnoli G, Ramoni C, Cianfriglia S, Gessani S (1999) Interferon-gamma up-regulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages. Lab Invest 79(10):1299

    CAS  PubMed  Google Scholar 

  20. Qin Z, Blankesistein T (2000) CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNg receptor expression by nonhematopoietic cells. Immunity 12:677

    Article  CAS  PubMed  Google Scholar 

  21. Rapp L, Fuji H (1983) Differential antigenic expression of the DBA/2 lymphoma L1210 and its sublines: cross-reactivity with C3H mammary tumours as defined by syngeneic monoclonal antibodies. Cancer Res 43(6):2592

    CAS  PubMed  Google Scholar 

  22. Roninson IB (1992) The role of the MDR1 (P-glycoprotein) gene in multidrug resistance in vitro and in vivo. Biochem Pharmacol 43:95

    CAS  PubMed  Google Scholar 

  23. Scheper RJ, Dalton WS, Grogan TM, Schlosser A, Bellamy WT, Taylor CW, Scuderi P, Spier C (1991) Altered expression of P-glycoprotein and cellular adhesion molecules on human multi-drug-resistant tumor cells does not affect their susceptibility to NK-and LAK-mediated cytotoxicity. Int J Cancer 48(4):562

    CAS  PubMed  Google Scholar 

  24. Seliger B, Harders C, Wollscheid U, Staege MS, Reske-Kunz AB, Huber C (1996) Suppression of MHC class I antigens in oncogenic transformants: association with decreased recognition by cytotoxic T lymphocytes. Exp Hematol 24(11):1275

    CAS  PubMed  Google Scholar 

  25. Shtil AA, Turner JG, Durfee J, Dalton WS, Hua Y (1999) Cytokine-based tumor cell vaccine is equally effective against parental and isogenic multidrug-resistant myeloma cells: the role of cytotoxic T lymphocytes. Blood 93(6):1831

    CAS  PubMed  Google Scholar 

  26. Smyth MJ, Krasovkis E, Sutton VR, Johnstone RW (1998) The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumour cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci U S A 95(12):7024

    CAS  PubMed  Google Scholar 

  27. Soto F, Canaves JM, Gonzalez-Ros JM, Ferragut JA (1992) Rapid kinetics of the interaction between daunomycin and drug-sensitive or drug-resistant P388 leukemia cells. FEBS Lett 301:119

    CAS  PubMed  Google Scholar 

  28. Soto F, Planells-Cases R, Canaves JM, Ferrer-Montiel AV, Aleu J, Gamarro F, Castanys S, Gonzalez-Ros JM, Ferragut JA (1993) Possible coexistence of two independent mechanisms contributing to anthracycline resistance in leukemia P388 cells. Eur J Cancer 29A(15):2144

    CAS  PubMed  Google Scholar 

  29. VandenDriessche T, Bakkus M, Toussaint-Demylle D, Thielemans K, Verschueren H, De Baetselier P (1994) Tumorigenicity of mouse T lymphoma cells is controlled by the level of major histocompatibility complex class I H-2Kk antigens. Clin Exp Metastasis 12(1):73

    CAS  PubMed  Google Scholar 

  30. Wang YY, Zheng XX (2002) A flow cytometry-based assay for quantitative analysis of cellular proliferation and cytotoxicity in vitro. J Immunol Methods 268:179

    CAS  PubMed  Google Scholar 

  31. Weisburg JH, Curcio M, Caron PC, Raghu G, Mechetner EB, Roepe PD, Scheinberg DA (1996) The multidrug resistance phenotype confers immunological resistance. J Exp Med 183(6):2699

    CAS  PubMed  Google Scholar 

  32. Woods G, Lund LA, Naik M, Ling V, Ochi A (1988) Resistance of multidrug-resistant lines to natural killer-like cell-mediated cytotoxicity. FASEB J 2(12):2791

    CAS  PubMed  Google Scholar 

  33. Zhihai Q, Blankestein T (2000) CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNγ receptor expression by nonhematopoietic cells. Immunity 12:677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Manuel Sánchez and Dr Rosa Planells-Cases for critical reading of this manuscript, Dr Miguel Saceda and Dr Gonzalo Rubio for helpful suggestions and discussions, and Dr Agustín Beltrán de Heredia-Rueda and Dr José A. Pérez de Gracia for helpful assistance with γ-irradiation of cells and in the animal facilities.This work has been supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT) and the European Commission, grants SAF-2000-0142 and 1FD97-0662-C02-01, and the Instituto de Salud Carlos III grant FISSS-01/0038-02 and 01/0038-01 (to J.A.F. and A.F-M.). Elena Martín-Orozco was the recipient of a contract from the Spanish Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Martín-Orozco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Orozco, E., Ferragut, J.A., Garcia-Peñarrubia, P. et al. Acquisition of multidrug resistance by L1210 leukemia cells decreases their tumorigenicity and enhances their susceptibility to the host immune response. Cancer Immunol Immunother 54, 328–336 (2005). https://doi.org/10.1007/s00262-004-0588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0588-7

Keywords

Navigation