Skip to main content

Advertisement

Log in

In vivo sodium MR imaging of the abdomen at 3T

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

Transmembrane sodium (23Na) gradient is critical for cell survival and viability and a target for the development of anti-cancer drugs and treatment as it serves as a signal transducer. The ability to integrate abdominal 23Na MRI in clinical settings would be useful to non-invasively detect and diagnose a number of diseases in various organ systems. Our goal in this work was to enhance the quality of 23Na MRI of the abdomen using a 3-Tesla MR scanner and a novel 8-channel phased-array dual-tuned 23Na and 1H transmit (Tx)/receive (Rx) coil specially designed to image a large abdomen region with relatively high SNR.

Methods

A modified GRE imaging sequence was optimized for 23Na MRI to obtain the best possible combination of SNR, spatial resolution, and scan time in phantoms as well as volunteers. Tissue sodium concentration (TSC) of the whole abdomen was calculated from the inhomogeneity-corrected 23Na MRI for absolute quantification. In addition, in vivo reproducibility and reliability of TSC measurements from 23Na MRI was evaluated in normal volunteers.

Results

23Na axial images of the entire abdomen with a high spatial resolution (0.3 cm) and SNR (~20) in 15 min using the novel 8-channel dual-tuned 23Na and 1H transmit/receive coil were obtained. Quantitative analysis of the sodium images estimated a mean TSC of the liver to be 20.13 mM in healthy volunteers.

Conclusion

Our results have shown that it is feasible to obtain high-resolution 23Na images using a multi-channel surface coil with good SNR in clinically acceptable scan times in clinical practice for various body applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nogae S, Michimata M, Kanazawa M, et al. (2000) Cardiac infarcts increase sodium transporter transcripts (rBSC1) in the thick ascending limb of Henle. Kidney Int 57(5):2055–2063

    Article  CAS  PubMed  Google Scholar 

  2. Ouwerkerk R, Jacobs MA, Macura KJ, et al. (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Res Treat 106(2):151–160

    Article  CAS  PubMed  Google Scholar 

  3. Madelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 38(3):511–529

    Article  PubMed Central  PubMed  Google Scholar 

  4. Romanzetti S, Mirkes CC, Fiege DP, Celik A, Felder J, Shah NJ (2014) Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4Tesla. Neuroimage 96:44–53

  5. Lanz T, Mayer M, Roboson MD, Neubauer S, Ruff J, Weisser A (2007) An 8-channel 23Na heart array for application at 3 T. In: Proceedings in international society of magnetic resonance medicine

  6. Panda A, Jones S, Stark H, et al. (2012) Phosphorus liver MRSI at 3 T using a novel dual-tuned eight-channel (3)(1)P/(1)H H coil. Magn Reson Med 68(5):1346–1356

    Article  CAS  PubMed  Google Scholar 

  7. American College of Radiology (ACR) (1998) Phantom test guidance for the ACR MRI Accreditation Program. Reston, VA

  8. Rofsky NM, Lee VS, Laub G, et al. (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212(3):876–884

    Article  CAS  PubMed  Google Scholar 

  9. Bansal N, Germann MJ, Seshan V, et al. (1993) Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. Biochemistry 32(21):5638–5643

    Article  CAS  PubMed  Google Scholar 

  10. Atthe BK, Babsky AM, Hopewell PN, et al. (2009) Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI. Am J Physiol Renal Physiol 297(5):F1288–1298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Babsky AM, Topper S, Zhang H, et al. (2008) Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn Reson Med 59(3):485–491

    Article  CAS  PubMed  Google Scholar 

  12. Hopewell PN, Bansal N (2008) Noninvasive evaluation of nonalcoholic fatty liver disease (NAFLD) using 1H and 23Na magnetic resonance imaging and spectroscopy in a rat model. Proc Int Soc Magn Reson Med

  13. Nagy IZ, Lustyik G, Nagy VZ, Zarandi B, Bertoni-Freddari C (1981) Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive x-ray microanalysis. J Cell Biol 90(3):769–777

    Article  CAS  PubMed  Google Scholar 

  14. Rosen Y, Lenkinski RE (2009) Sodium MRI of a human transplanted kidney. Acad Radiol 16(7):886–889

    Article  PubMed  Google Scholar 

  15. Maril N, Rosen Y, Reynolds GH, et al. (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234

    Article  CAS  PubMed  Google Scholar 

  16. Ouwerkerk R (2007) Sodium magnetic resonance imaging: from research to clinical use. J Am Coll Radiol 4(10):739–741

    Article  PubMed Central  PubMed  Google Scholar 

  17. Graessl A, Ruehle A, Renz W, et al. (2013) Sodium imaging of the heart at 7T: design, evaluation and application of a four-channel transmit/receive surface coil array. J Cardiovas Magn Reson 15(Suppl 1):W14–W14

    Google Scholar 

  18. Ouwerkerk R, Bottomley PA, Solaiyappan M, et al. (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative 23Na MR imaging study. Radiology 248(1):88–96

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537

    Article  PubMed  Google Scholar 

  20. Ouwerkerk R, Jacobs MA, Macura KJ, et al. (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Res Treat 106(2):151–160

    Article  CAS  PubMed  Google Scholar 

  21. Jacobs MA, Ouwerkerk R, Wolff AC, et al. (2011) Monitoring of neoadjuvant chemotherapy using multiparametric, (2)(3)Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat 128(1):119–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166

    Article  CAS  PubMed  Google Scholar 

  23. Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216(2):559–568

    Article  CAS  PubMed  Google Scholar 

  24. Henzler T, Konstandin S, Schmid-Bindert G, et al. (2012) Imaging of tumor viability in lung cancer: initial results using 23Na-MRI. Rofo 184(4):340–344

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs MA, Ouwerkerk R, Kamel I, et al. (2009) Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: a preliminary study. J Magn Reson Imaging 29(3):649–656

    Article  PubMed Central  PubMed  Google Scholar 

  26. Steidle G, Graf H, Schick F (2004) Sodium 3-D MRI of the human torso using a volume coil. Magn Reson Imaging 22(2):171–180

    Article  PubMed  Google Scholar 

  27. Wetterling F, Tabbert M, Junge S, et al. (2010) A double-tuned (1)H/(23)Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI. Phys Med Biol 55(24):7681–7695

    Article  PubMed  Google Scholar 

  28. Kim JH, Moon CH, Park BW, et al. (2012) Multichannel transceiver dual-tuned RF coil for proton/sodium MR imaging of knee cartilage at 3 T. Magn Reson Imaging 30(4):562–571

    Article  PubMed  Google Scholar 

  29. Jacobs MA, Ouwerkerk R, Kamel I, et al. (2009) Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: a preliminary study. J Magn Reson Imaging 29(3):649–656

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kilickesmez O, Yirik G, Bayramoglu S, Cimilli T, Aydin S (2008) Non-breath-hold high b-value diffusion-weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal abdominal organs. Diagn Interv Radiol 14(2):83–87

    PubMed  Google Scholar 

  31. Miquel ME, Scott AD, Macdougall ND, et al. (1019) In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol 2012(85):1507–1512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Institutes of Health (NIH) grant numbers CA110107 and EB005964. The authors thank Helmut Stark, PhD, (MRI Coils Research, Stark Contrast, Erlangen, Germany) for his assistance with coil design and manufacturing, the volunteers for MRI scans, Ms. S. Dharamadhikari and Ms. B. George for technical assistance, and Dr. Andriy Babsky and Dr. Andrew A Smith (University of Mississippi Medical Centre, Jackson, MS) for their valuable discussion and editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy R. James.

Additional information

Judy R. James, Anshuman Panda, and Navin Bansal are formerly with Radiology and Imaging Sciences, Indiana University School of Medicine and School of Health Sciences, Purdue University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, J.R., Panda, A., Lin, C. et al. In vivo sodium MR imaging of the abdomen at 3T. Abdom Imaging 40, 2272–2280 (2015). https://doi.org/10.1007/s00261-015-0428-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0428-6

Keywords

Navigation