Skip to main content

Advertisement

Log in

Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to compare presurgical 18F-fluoroethyl-L-tyrosine (18F-FET) uptake and Gd-diethylenetriaminepentaacetic acid (DTPA) enhancement on MRI (Gd) with intraoperative 5-aminolevulinic acid (5-ALA) fluorescence in cerebral gliomas.

Methods

18F-FET positron emission tomography (PET) was performed in 30 patients with brain lesions suggestive of diffuse WHO grade II or III gliomas on MRI. PET and MRI data were coregistered to guide neuronavigated biopsies before resection. After oral application of 5-ALA, 38 neuronavigated biopsies were taken from predefined tumour areas that were positive or negative for 18F-FET or Gd and checked for 5-ALA fluorescence. 18F-FET uptake with a mean tumour to brain ratio ≥1.6 was rated as positive.

Results

Of 38 biopsies, 21 corresponded to high-grade glioma tissue (HGG) of WHO grade III (n = 19) or IV (n = 2) and 17 biopsies to low-grade glioma tissue (LGG) of WHO grade II. In biopsies corresponding to HGG, 18F-FET PET was positive in 86% (18/21), but 5-ALA and Gd in only 57% (12/21). A mismatch between Gd and 5-ALA was observed in 6 of 21 cases of HGG biopsy samples (3 Gd-positive/5-ALA-negative and 3 Gd-negative/5-ALA-positive). In biopsies corresponding to LGG, 18F-FET was positive in 41% (7/17), while 5-ALA and Gd were negative in all but one instance. All tumour areas with 5-ALA fluorescence were positive on 18F-FET PET.

Conclusion

There are differences between 18F-FET and 5-ALA uptake in cerebral gliomas owing to a limited sensitivity of 5-ALA to detect tumour tissue especially in LGG. 18F-FET PET is more sensitive to detect glioma tissue than 5-ALA fluorescence and should be considered as an additional tool in resection planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, et al. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. J Neurosurg Epub, 2010 Apr 16. doi:10.3171/2010.3.JNS097

  2. Byrne TN. Imaging of gliomas. Semin Oncol 1994;21:162–7.

    PubMed  CAS  Google Scholar 

  3. Jansen EP, Dewit LG, van Herk M, Bartelink H. Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 2000;56:151–6.

    Article  PubMed  CAS  Google Scholar 

  4. Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 1992;34:463–9.

    Article  PubMed  CAS  Google Scholar 

  5. Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 1993;79:533–6.

    Article  PubMed  CAS  Google Scholar 

  6. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–45.

    PubMed  CAS  Google Scholar 

  7. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008;10:1–18.

    Article  PubMed  Google Scholar 

  8. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999;40:205–12.

    PubMed  CAS  Google Scholar 

  9. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 2002;57:853–6.

    Article  PubMed  CAS  Google Scholar 

  10. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006;33:287–94.

    Article  PubMed  CAS  Google Scholar 

  11. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678–87.

    Article  PubMed  Google Scholar 

  12. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 2009;36:779–87.

    Article  PubMed  CAS  Google Scholar 

  13. Pöpperl G, Götz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K. Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004;31:1464–70.

    Article  PubMed  Google Scholar 

  14. Tonn JC, Stummer W. Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 2008;55:20–6. Review.

    PubMed  Google Scholar 

  15. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 2000;93:1003–13.

    Article  PubMed  CAS  Google Scholar 

  16. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006;7:392–401.

    Article  PubMed  CAS  Google Scholar 

  17. Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T, et al. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 2010;116:1545–52.

    Article  PubMed  CAS  Google Scholar 

  18. Stockhammer F, Misch M, Horn P, Koch A, Fonyuy N, Plotkin M. Association of F18-fluoro-ethyl-tyrosin uptake and 5-aminolevulinic acid-induced fluorescence in gliomas. Acta Neurochir (Wien) 2009;151:1377–83.

    Article  Google Scholar 

  19. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization classification of tumours of the central nervous system. Lyon: IARC Press; 2007. p. 25–68.

    Google Scholar 

  20. Lacroix M, Abi-Said D, Fourney DR, Gokasian ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001;95:190–8.

    Article  PubMed  CAS  Google Scholar 

  21. Pichlmeier U, Bink A, Schackert G, Stummer W, ALA Glioma Study Group. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 2008;10:1025–34.

    Article  PubMed  Google Scholar 

  22. Grosu AL, Nestle U, Weber WA. How to use functional imaging information for radiotherapy planning. Eur J Cancer 2009;45 Suppl 1:461–3.

    Article  PubMed  Google Scholar 

  23. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 2009;64:471–81.

    Article  PubMed  Google Scholar 

  24. Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007;34:1933–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Suzanne Schaden and Elisabeth Theelen for assistance in the PET studies; Silke Grafmüller, Erika Wabbals and Sascha Rehbein for radiosynthesis of 18F-FET. This work was supported by the Brain Imaging Center West (BICW).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Josef Langen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floeth, F.W., Sabel, M., Ewelt, C. et al. Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur J Nucl Med Mol Imaging 38, 731–741 (2011). https://doi.org/10.1007/s00259-010-1690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1690-z

Keywords

Navigation