Skip to main content

Advertisement

Log in

Peripheral benzodiazepine receptors in the brain of cirrhosis patients with manifest hepatic encephalopathy

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

It has been suggested that ammonia-induced enhancement of peripheral benzodiazepine receptors (PBRs) in the brain is involved in the development of hepatic encephalopathy (HE). This hypothesis is based on animal experiments and studies of post-mortem human brains using radiolabelled PK11195, a specific ligand for PBR, but to our knowledge has not been tested in living patients. The aim of the present study was to test this hypothesis by measuring the number of cerebral PBRs in specific brain regions in cirrhotic patients with an acute episode of clinically manifest HE and healthy subjects using dynamic 11C-PK11195 brain PET.

Methods

Eight cirrhotic patients with an acute episode of clinically manifest HE (mean arterial ammonia 81 μmol/l) and five healthy subjects (22 μmol/l) underwent dynamic 11C-PK11195 and 15O-H2O PET, co-registered with MR images. Brain regions (putamen, cerebellum, cortex and thalamus) were delineated on co-registered 15O-H2 15O and MR images and copied to the dynamic 15O-H2O and 11C-PK11195 images. Regional cerebral blood flow (CBF) (15O-H2O scan) and the volume of distribution of PK11195 (11C-PK11195 scan) were calculated by kinetic analysis.

Results

There were regional differences in the CBF, with lowest values in the cortex and highest values in the putamen in both groups of subjects (p<0.05), but no significant differences between the groups. There were no significant differences in the volume of distribution of PK11195 (V d) between regions or between the two groups of subjects. Mean values of V d ranged from 1.0 to 1.1 in both groups of subjects.

Conclusion

The results do not confirm the hypothesis of an increased number of PBRs in patients with HE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 2002;17(4):221–7

    Article  PubMed  CAS  Google Scholar 

  2. Cooper AJ, Plum F Biochemistry and physiology of brain ammonia. Physiol Rev 1987;67(2):440–519

    PubMed  CAS  Google Scholar 

  3. Ott P, Larsen FS Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 2004;44(4):185–98

    Article  PubMed  CAS  Google Scholar 

  4. Sherlock S, Summerskill WH, White LP, Phear EA Portal-systemic encephalopathy; neurological complications of liver disease. Lancet 1954;267(6836):454–7

    PubMed  CAS  Google Scholar 

  5. Itzhak Y, Norenberg MD Ammonia-induced upregulation of peripheral-type benzodiazepine receptors in cultured astrocytes labeled with [3H]PK 11195. Neurosci Lett 1994;177(1–2):35–8

    Article  PubMed  CAS  Google Scholar 

  6. Tsankova V, Magistrelli A, Cantoni L, Tacconi MT Peripheral benzodiazepine receptor ligands in rat liver mitochondria: effect on cholesterol translocation. Eur J Pharmacol 1995;294(2–3):601–7

    Article  PubMed  CAS  Google Scholar 

  7. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis Steroids 1997;62(1):21–8

    Article  PubMed  CAS  Google Scholar 

  8. Le Fur G, Perrier ML, Vaucher N, Imbault F, Flamier A, Benavides J, et al. Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide. I. In vitro studies. Life Sci 1983;32(16):1839–47

    Article  PubMed  Google Scholar 

  9. Lavoie J, Layrargues GP, Butterworth RF Increased densities of peripheral-type benzodiazepine receptors in brain autopsy samples from cirrhotic patients with hepatic encephalopathy. Hepatology 1990;11(5):874–8

    Article  PubMed  CAS  Google Scholar 

  10. Giguere JF, Hamel E, Butterworth RF Increased densities of binding sites for the ’peripheral-type’ benzodiazepine receptor ligand [3H]PK 11195 in rat brain following portacaval anastomosis. Brain Res 1992;585(1–2):295–8

    Article  PubMed  CAS  Google Scholar 

  11. Desjardins P, Bandeira P, Rao VL, Butterworth RF Portacaval anastomosis causes selective alterations of peripheral-type benzodiazepine receptor expression in rat brain and peripheral tissues. Neurochem Int 1999;35(4):293–9

    Article  PubMed  CAS  Google Scholar 

  12. Swain M, Butterworth RF, Blei AT Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 1992;15(3):449–53

    Article  PubMed  CAS  Google Scholar 

  13. Kadota Y, Inoue K, Tokunaga R, Taketani S Induction of peripheral-type benzodiazepine receptors in mouse brain following thioacetamide-induced acute liver failure. Life Sci 1996;58(12):953–9

    Article  PubMed  CAS  Google Scholar 

  14. Itzhak Y, Norenberg MD Attenuation of ammonia toxicity in mice by PK 11195 and pregnenolone sulfate. Neurosci Lett 1994;182(2):251–4

    Article  PubMed  CAS  Google Scholar 

  15. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997;50(2):345–53

    Article  PubMed  CAS  Google Scholar 

  16. Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, et al. In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 2000;11(13):2957–60

    Article  PubMed  CAS  Google Scholar 

  17. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 2005;57(2):168–75

    Article  PubMed  CAS  Google Scholar 

  18. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123(Pt 11):2321–37

    Article  PubMed  Google Scholar 

  19. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, et al. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study Mult Scler 2005;11(2):127–34

    Article  PubMed  CAS  Google Scholar 

  20. Versijpt JJ, Dumont F, Van Laere KJ, Decoo D, Santens P, Audenaert K, et al. Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur Neurol 2003;50(1):39–47

    Article  PubMed  CAS  Google Scholar 

  21. Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989;26(6):752–8

    Article  PubMed  CAS  Google Scholar 

  22. Cooper AJ, Plum F Biochemistry and physiology of brain ammonia. Physiol Rev 1987;67(2):440–519

    PubMed  CAS  Google Scholar 

  23. Burra P, Senzolo M, Pizzolato G, Ermani M, Chierichetti F, Bassanello M, et al. Does liver-disease aetiology have a role in cerebral blood-flow alterations in liver cirrhosis? Eur J Gastroenterol Hepatol 2004;16(9):885–90

    Article  PubMed  CAS  Google Scholar 

  24. Conn HO, Lieberthal MM The hepatic coma syndromes and lactulose. Baltimore: Williams and Williams; 1979

    Google Scholar 

  25. Tygstrup N Determination of the hepatic elimination capacity (Lm) of galactose by single injection. Scand J Clin Lab Invest Suppl 1966;18:118–25

    PubMed  CAS  Google Scholar 

  26. van Anken HC, Schiphorst ME A kinetic determination of ammonia in plasma. Clin Chim Acta 1974;56(2):151–7

    Article  PubMed  Google Scholar 

  27. Talairach J, Tournoux P Co-planar stereotactic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Stuttgart New York: Thieme; 1988

    Google Scholar 

  28. Collins DL, Neelin P, Peters TM, Evans AC Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994;18(2):192–205

    Article  PubMed  CAS  Google Scholar 

  29. Ribeiro MJ, Almeida P, Strul D, Ferreira N, Loc’h C, Brulon V, et al. Comparison of fluorine-18 and bromine-76 imaging in positron emission tomography. Eur J Nucl Med 1999;26(7):758–66

    Article  PubMed  CAS  Google Scholar 

  30. van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA Image-derived input functions for determination of MRGlu in cardiac 18F-FDG PET scans. J Nucl Med 2001;42(11):1622–9

    PubMed  Google Scholar 

  31. Vafaee M, Murase K, Gjedde A, Meyer E Dispersion correction for automatic sampling of O-15 labeled H20 and red blood cells. In: Meyers R, CunninghamV, Bailey D, Jones T (eds) Quantification of brain function using PET New York: Academic Press; 1996;72–5

  32. Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab 1996;16(5):765–80

    Article  PubMed  CAS  Google Scholar 

  33. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J Brain blood flow measured with intravenous H2 15O. II Implementation and validation. J Nucl Med 1983;24(9):790–8

    PubMed  CAS  Google Scholar 

  34. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10(5):740–7

    PubMed  CAS  Google Scholar 

  35. Cumming P, Pedersen MD, Minuzzi L, Mezzomo K, Danielsen EH, Iversen P et al. Distribution of PK11195 binding sites in porcine brain studied by autoradiography in vitro and by positron emission tomography. Synapse 2006; in press

  36. Keiding S, Sørensen M, Bender D, Ott P, Vilstrup H Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography.Hepatology 2006;43(1):42–50

    Article  PubMed  CAS  Google Scholar 

  37. Itzhak Y, Norenberg MD Ammonia-induced upregulation of peripheral-type benzodiazepine receptors in cultured astrocytes labeled with [3H]PK 11195. Neurosci Lett 1994;177(1–2):35–8

    Article  PubMed  CAS  Google Scholar 

  38. Norenberg MD, Lapham LW, Nichols FA, May AG An experimental model for the study of hepatic encephalopathy. Arch Neurol 1974;31(2):106–9

    PubMed  CAS  Google Scholar 

  39. Cooper AJ, Plum F Biochemistry and physiology of brain ammonia. Physiol Rev 1987;67(2):440–519

    PubMed  CAS  Google Scholar 

  40. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973;60(8):646–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the Novo Nordic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Keiding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iversen, P., Hansen, D.A., Bender, D. et al. Peripheral benzodiazepine receptors in the brain of cirrhosis patients with manifest hepatic encephalopathy. Eur J Nucl Med Mol Imaging 33, 810–816 (2006). https://doi.org/10.1007/s00259-005-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0052-8

Keywords

Navigation