Skip to main content

Advertisement

Log in

The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of microalgae for wastewater treatment has been proposed as a cost-effective method to produce biofuels while remediating waste streams. This study examined the microalgae biomass production rate, wastewater treatment efficiency, and prokaryotic organism microbiome associated with microalgae Chlorella sorokiniana cultivated on anaerobic digestate effluent. Final microalgae biomass concentrations from nine photobioreactors were highly variable and had values that ranged between 0.14 g/L and 0.90 g/L. Nutrient removal efficiencies for TN (total nitrogen), N-NH4 (ammonium nitrogen), and COD (chemical oxygen demand) ranged from 34% to 67%, 65% to 97%, and−60% to 14%, respectively. Analysis of individual OTUs (operational taxonomic units) from the microbial community revealed that microalgae biomass concentrations were significantly correlated with the relative abundance of OTUs in the genus Pusillimonas. Predictive metagenomic analyses identified additional correlations associated with biomass production and nutrient removal. These results suggest that the microbial community present during microalgae cultivation on wastewater can impact the performance of the system for biomass production and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan A, Ibraheem I (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcántara C, Domínguez JM, García D, Blanco S, Pérez R, García-Encina PA, Muñoz R (2015) Evaluation of wastewater treatment in a novel anoxic–aerobic algal–bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresour Technol 191:173–186

    PubMed  Google Scholar 

  • Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbø CL, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40(W1):W88–W95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babatsouli P, Fodelianakis S, Paranychianakis N, Venieri D, Dialynas M, Kalogerakis N (2015) Single stage treatment of saline wastewater with marine bacterial–microalgae consortia in a fixed-bed photobioreactor. J Hazard Mater 292:155–163

    CAS  PubMed  Google Scholar 

  • Berland B, Bianchi M, Maestrini S (1969) Etude des bactéries associées aux Algues marines en culture. Mar Biol 2(4):350–355

    Google Scholar 

  • Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol:211-252

    Google Scholar 

  • Braker G, Schwarz J, Conrad R (2010) Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol Ecol 73(1):134–148

    CAS  PubMed  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  • Busse HJ, Auling G (2015) Achromobacter. Bergey's Manual of Systematics of Archaea and Bacteria:1-14

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carney LT, Reinsch SS, Lane PD, Solberg OD, Jansen LS, Williams KP, Trent JD, Lane TW (2014) Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res 4:52–61

    Google Scholar 

  • Chróst RJ (1975) Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. Acta Microbiol Pol 7:125–133

    Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13(1):291–314

    Google Scholar 

  • Covarrubias SA, de Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93(6):2669–2680

    CAS  PubMed  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438(7064):90–93

    CAS  PubMed  Google Scholar 

  • Dalsgaard T, Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol 60(1):291–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis R, Kinchin C, Markham J, Tan E, Laurens L, Sexton D, Knorr D, Schoen P, Lukas J (2014) Process design and economics for the conversion of algal biomass to biofuels: algal biomass fractionation to lipid-and carbohydrate-derived fuel products. National Renewable Energy Lab.(NREL), Golden, CO (United States)

  • de Bashan LE, Trejo A, Huss VA, Hernandez J-P, Bashan Y (2008a) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99(11):4980–4989

    PubMed  Google Scholar 

  • de Bashan LE, Antoun H, Bashan Y (2008b) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44(4):938–947

    PubMed  Google Scholar 

  • del Mar Morales-Amaral, M, Gómez-Serrano, C, Acién, FG, Fernández-Sevilla, JM, Molina-Grima, E (2015) Production of microalgae usingcentrate from anaerobic digestion as the nutrient source. Algal Res 9:297-305.

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154(1):23–30

    CAS  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930

    Google Scholar 

  • DOE (2016) National Algal Biofuels Technology Review. In: Barry A, Wolfe A, English C, Ruddick C, Lambert D (eds) National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, p 212

  • F.R.S. KP (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dubl Phil Mag 2(11):559–572. https://doi.org/10.1080/14786440109462720

    Google Scholar 

  • Farnelid H, Tarangkoon W, Hansen G, Hansen PJ, Riemann L (2010) Putative N2-fixing heterotrophic bacteria associated with dinoflagellate–Cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Microb Ecol 61(2):105–117

    Google Scholar 

  • Ferrell J, Sarisky-Reed V (2010) National Algal Biofuels Technology Roadmap. In: Fishman D, Majumdar R, Morello J, Pate R, Yang J (eds) National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, p 140

  • Fisher RA (1919) XV.—The correlation between relatives on the supposition of Mendelian inheritance. Earth Env Sci T R SO 52(2):399–433

    Google Scholar 

  • Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE (2014) Conducting a microbiome study. Cell 158(2):250–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods 95(2):149–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins BT (2014) Co-culturing green algae with bacteria for enhanced growth and production of biofuel precursors. University of California, Davis

  • Higgins BT, VanderGheynst JS (2014) Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors. PLoS One 9(5):e96807

    PubMed  PubMed Central  Google Scholar 

  • Higgins BT, Paddock MB, Staley S, Ceballos SJ, VanderGheynst JS (2017) Modeling of photosynthetic aeration for energy-efficient wastewater treatment and reduced greenhouse gas emissions. In: 2017 ASABE Annual International Meeting, American Society of Agricultural and Biological Engineers

  • Higgins BT, Gennity I, Fitzgerald PS, Ceballos SJ, Fiehn O, VanderGheynst JS (2018) Algal–bacterial synergy in treatment of winery wastewater. npj Clean Water 1(1):6

  • Holmes B, Paddock MB, VanderGheynst JS, Higgins BT (2019) Algal photosynthetic aeration increases the capacity of bacteria to degrade organics in wastewater. Biotechnol Bioeng 0(ja) doi:https://doi.org/10.1002/bit.27172

    PubMed  Google Scholar 

  • Jin L, Ko S-R, Cui Y, Lee CS, Oh H-M, Ahn C-Y, Lee H-G (2017) Pusillimonas caeni sp. nov., isolated from a sludge sample of a biofilm reactor. Antonie Van Leeuwenhoek 110(1):125–132

    CAS  PubMed  Google Scholar 

  • Jolliffe I (2011) Principal Component Analysis. In: Lovric M (ed) International Encyclopedia of Statistical Science. Springer, Berlin, pp 1094–1096

    Google Scholar 

  • Jones KJ, Moore K, Sambles C, Love J, Studholme DJ, Aves SJ (2016) Draft genome sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 isolated from consortium with the hydrocarbon-producing alga Botryococcus braunii. Genome Announc 4(1):e01527–e01515

    PubMed  PubMed Central  Google Scholar 

  • Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270(5236):623–625

    CAS  Google Scholar 

  • Kim Y-J, Kim MK, Im W-T, Srinivasan S, Yang D-C (2010) Parapusillimonas granuli gen. nov., sp. nov., isolated from granules from a wastewater-treatment bioreactor. Int J Syst Evol Microbiol 60(6):1401–1406

    Google Scholar 

  • Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105

    CAS  Google Scholar 

  • Kong M, Chan K (1979) A study on the bacterial flora isolated from marine algae. Bot Mar 22(2):83–98

    Google Scholar 

  • Krustok I, Truu J, Odlare M, Truu M, Ligi T, Tiirik K, Nehrenheim E (2015) Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors. Appl Microbiol Biotechnol 99(15):6537–6549

    CAS  PubMed  Google Scholar 

  • Kutner MH, Nachtsheim CJ, Neter J, Li W (2013) Applied Linear Statistical Models, 5 edn. McGraw-Hill, New York

    Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leejeerajumnean A, Ames J, Owens J (2000) Effect of ammonia on the growth of Bacillus species and some other bacteria. Lett Appl Microbiol 30(5):385–389

    CAS  PubMed  Google Scholar 

  • Li YL, Fan XR, Shen QR (2008) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31(1):73–85

    PubMed  Google Scholar 

  • Li P, Wang L, Feng L (2013) Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. T7-7. J Bacteriol:JB. 02107-12

  • Marcilhac C, Sialve B, Pourcher A-M, Ziebal C, Bernet N, Béline F (2015) Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresour Technol 175:224–230

    CAS  PubMed  Google Scholar 

  • Osundeko O, Ansolia P, Gupta SK, Bag P, Bajhaiya AK (2019) Promises and challenges of growing microalgae in wastewater water conservation, recycling and reuse: issues and challenges. Springer, pp 29-53

  • Padhi SK, Maiti NK (2017) Molecular insight into the dynamic central metabolic pathways of Achromobacter xylosoxidans CF-S36 during heterotrophic nitrogen removal processes. J Biosci Bioeng 123(1):46–55

    CAS  PubMed  Google Scholar 

  • Patil SS, Kumar MS, Ball AS (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl Microbiol Biotechnol 87(1):353–363

    CAS  PubMed  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Thero Biol 13:131–144

    Google Scholar 

  • Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S (2016) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29

    CAS  PubMed  Google Scholar 

  • Shangguan H, Liu J, Zhu Y, Tong Z, Wu Y (2015) Start-up of a spiral periphyton bioreactor (SPR) for removal of COD and the characteristics of the associated microbial community. Bioresour Technol 193:456–462

    CAS  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program: biodiesel from algae aquatic species program. National Renewable Energy Laboratory

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45(11):3351–3358

    CAS  PubMed  Google Scholar 

  • Su Y, Mennerich A, Urban B (2012) Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios. Bioresour Technol 105:67–73

    CAS  PubMed  Google Scholar 

  • Team RC (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Vannelli T, Hooper AB (1993) Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 59(11):3597–3601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang W, Chen L, Wang J, Liu T (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 128:745–750

    CAS  PubMed  Google Scholar 

  • Wang J, Yan D, Dixon R, Wang Y-P (2016) Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. MBio 7(4):e00792–e00716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Prasad R, Higgins BT (2019) Aerobic bacterial pretreatment to overcome algal growth inhibition on high-strength anaerobic digestates. Water Res 162:420–426

    CAS  PubMed  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Google Scholar 

  • Xin C, Addy MM, Zhao J, Cheng Y, Cheng S, Mu D, Liu Y, Ding R, Chen P, Ruan R (2016) Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study. Bioresour Technol 211:584–593

    CAS  PubMed  Google Scholar 

  • Ye J, Song Z, Wang L, Zhu J (2016) Metagenomic analysis of microbiota structure evolution in phytoremediation of a swine lagoon wastewater. Bioresour Technol 219:439–444

    CAS  PubMed  Google Scholar 

  • Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):S71–S74

    CAS  PubMed  Google Scholar 

  • Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98(4):929–935

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tien-Chieh Hung, Dr. Annalise Franz, Dr. Ruihong Zhang, Dr. Brendan Higgins, Tyler Barzee, Cody Yothers, and Kayla Rude for their assistance with experiments.

Funding

This work was supported by California Energy Commission grant ARV-15-008 and National Science Foundation project #1438211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean S. VanderGheynst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paddock, M.B., Fernández-Bayo, J.D. & VanderGheynst, J.S. The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production. Appl Microbiol Biotechnol 104, 893–905 (2020). https://doi.org/10.1007/s00253-019-10246-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10246-x

Keywords

Navigation