Skip to main content
Log in

Biosynthesis, biotechnological production, and applications of glucosylglycerols

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glucosylglycerols (GGs) are known as compatible solutes accumulated by some bacteria including cyanobacteria as well as higher plants for their adaptations to salt or desiccation stresses. Since being identified in Japanese sake, their physiological effects and potential applications on human health cares have been explored in the following 15 years. Several different synthesis methods have been successively developed for the production of GGs. However, the efficiency of GG synthesis, especially biological synthesis, is still low. With the recent advances in genome sequencing and synthetic biology tools, systematical screening of enzyme candidates and metabolic engineering approaches is necessary for improving GG synthesis efficiency. In this review, we will summarize GG structure information, protective effects on human skin and digestive system as well as industrial enzymes, together with their synthesis by chemical, enzymatic, and biological in vivo approaches in detail, and provide some prospects on improving GG production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizawa Kyo ST, Kotani Y, Iwata K, Doi K (2013) Keratoconjunctival protecting agent, or keratoconjunctival disorder inhibiting agent. WO/2013/077433

  • Angermayr SA, Rovira AG, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33(6):352–361. doi:10.1016/j.tibtech.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87(2):223–226. doi:10.1111/j.1399-3054.1993.tb00146.x

    Article  CAS  Google Scholar 

  • Borges N, Ramos A, Raven ND, Sharp RJ, Santos H (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6(3):209–216. doi:10.1007/s007920100236

    Article  CAS  PubMed  Google Scholar 

  • Boury-Jamot M, Daraspe J, Bonte F, Perrier E, Schnebert S, Dumas M, Verbavatz JM (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis Handb Exp Pharmacol. Springer, Berlin Heidelberg, pp 205–217

    Book  Google Scholar 

  • Chen L, Wu L, Zhu Y, Song Z, Wang J, Zhang W (2014) An orphan two-component response regulator Slr1588 involves salt tolerance by directly regulating synthesis of compatible solutes in photosynthetic Synechocystis sp. PCC 6803. Mol BioSyst 10(7):1765–1774. doi:10.1039/c4mb00095a

    Article  CAS  PubMed  Google Scholar 

  • Dabhi AS, Bhatt NR, Shah MJ (2013) Voglibose: an alpha glucosidase inhibitor. J Clin Diagn Res 7(12):3023–3027. doi:10.7860/JCDR/2013/6373.3838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668. doi:10.1128/aem.07901-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelbrecht F, Marin K, Hagemann M (1999) Expression of the ggpS gene, involved in osmolyte synthesis in the marine cyanobacterium Synechococcus sp. Strain PCC 7002, revealed regulatory differences between this strain and the freshwater strain Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 65(11):4822–4829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erdmann N, Zuther E, Abarzua S (1992) Comparative studies on the photoproduction of nonhydrogenous resources by cyanobacteria. Curr Microbiol 25(2):83–87. doi:10.1007/Bf01570964

    Article  CAS  Google Scholar 

  • Goedl C, Sawangwan T, Mueller M, Schwarz A, Nidetzky B (2008) A High-yielding biocatalytic process for the production of 2-O-(α-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. Angew Chem 47(52):10086–10089. doi:10.1002/anie.200803562

    Article  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35(1):87–123. doi:10.1111/j.1574-6976.2010.00234.x

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2013) Chapter two—genomics of salt acclimation: synthesis of compatible solutes among cyanobacteria. In: Franck C, Corinne C-C (eds) Adv Bot Res, vol 65. Academic, New York, pp 27–55

    Google Scholar 

  • Hagemann M, Richter S, Mikkat S (1997a) The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J Bacteriol 179(3):714–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann M, Schoor A, Jeanjean R, Zuther E, Joset F (1997b) The stpA gene form Synechocystis sp. strain PCC 6803 encodes the glucosylglycerol-phosphate phosphatase involved in cyanobacterial osmotic response to salt shock. J Bacteriol 179(5):1727–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann M, Ribbeck-Busch K, Klahn S, Hasse D, Steinbruch R, Berg G (2008) The plant-associated bacterium Stenotrophomonas rhizophila expresses a new enzyme for the synthesis of the compatible solute glucosylglycerol. J Bacteriol 190(17):5898–5906. doi:10.1128/JB.00643-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada N, Zhao J, Kurihara H, Nakagata N, Okajima K (2010) Effects of topical application of α-D-glucosylglycerol on dermal levels of insulin-like growth factor-i in mice and on facial skin elasticity in humans. Biosci Biotechnol Biochem 74(4):759–765. doi:10.1271/bbb.90797

    Article  CAS  PubMed  Google Scholar 

  • Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123(3):285–295. doi:10.1007/s11120-014-9980-0

    Article  CAS  PubMed  Google Scholar 

  • Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383(2):277–283. doi:10.1042/bj20040746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda M, Mizutani K, Takahashi Y, Kurono G, Nishikawa Y (1974) Lilioside A and B, two new glycerol glucosides isolated from Lilium longiflorum Thunb. Tetrahedron Lett 45:3937–3940

    Article  Google Scholar 

  • Kaneda M, Mizutani K, Tanaka K (1982) Lilioside C, a glycerol glucoside from Lilium lancifolium. Phytochemistry 21(4):891–893. doi:10.1016/0031-9422(82)80087-3

    Article  CAS  Google Scholar 

  • Kaneda M, Kobayashi K, Nishida K, Katsuta S (1984) Liliosides D and E, two glycerol glucosides from Lilium japonicum. Phytochemistry 23(4):795–798. doi:10.1016/S0031-9422(00)85029-3

    Article  CAS  Google Scholar 

  • Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13(3):551–562. doi:10.1111/j.1462-2920.2010.02366.x

    Article  PubMed  Google Scholar 

  • Klahn S, Marquardt DM, Rollwitz I, Hagemann M (2009) Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana. J Exp Bot 60(6):1679–1689. doi:10.1093/jxb/erp030

    Article  PubMed  PubMed Central  Google Scholar 

  • Klähn S, Steglich C, Hess WR, Hagemann M (2010) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12(1):83–94. doi:10.1111/j.1462-2920.2009.02045.x

    Article  PubMed  Google Scholar 

  • Klahn S, Hohne A, Simon E, Hagemann M (2010) The gene ssl3076 encodes a protein mediating the salt-induced expression of ggpS for the biosynthesis of the compatible solute glucosylglycerol in Synechocystis sp. strain PCC 6803. J Bacteriol 192(17):4403–4412. doi:10.1128/JB.00481-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein J, Stumm G (2011) Use of glucosylglycerol. US20110207681 A1

  • Krutmann J, Lentzen G, Schwarz T (2009) Osmolytes for the treatment of allergic or viral respiratory diseases. WO/2009/027069

  • Luley-Goedl C, Sawangwan T, Mueller M, Schwarz A, Nidetzky B (2010) Biocatalytic process for production of α-glucosylglycerol using sucrose phosphorylase. Food Technol Biotechnol 48(3):276–283

    CAS  Google Scholar 

  • Ma P, Tan X, Lü X, Tian J (2016) Effects of ggpS over-expression on glycosylglycerol and glycerol biosynthesis of Synechocystis sp. PCC 6803. Chin J Biotechnol 32(3):347–354

    Google Scholar 

  • Marin K, Zuther E, Kerstan T, Kunert A, Hagemann M (1998) The ggpS gene from Synechocystis sp. strain PCC 6803 encoding glucosyl-glycerol-phosphate synthase is involved in osmolyte synthesis. J Bacteriol 180(18):4843–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkat S, Hagemann M (2000) Molecular analysis of the ggtBCD gene cluster of Synechocystis sp. strain PCC6803 encoding subunits of an ABC transporter for osmoprotective compounds. Arch Microbiol 174(4):273–282. doi:10.1007/s002030000201

    Article  CAS  PubMed  Google Scholar 

  • Mikkat S, Galinski EA, Berg G, Minkwitz A, Schoor A (2000) Salt adaptation in Pseudomonads: characterization of glucosylglycerol-synthesizing isolates from brackish coastal waters and the rhizosphere. Syst Appl Microbiol 23(1):31–40. doi:10.1016/S0723-2020(00)80043-0

    Article  CAS  PubMed  Google Scholar 

  • Nihira T, Saito Y, Ohtsubo K, Nakai H, Kitaoka M (2014) 2-O-alpha-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on beta-D-glucose 1-phosphate. PLoS One 9(1), e86548. doi:10.1371/journal.pone.0086548

    Article  PubMed  PubMed Central  Google Scholar 

  • Okumura Hidenobu US (2012) Blood glucose level suppressant and food inhibiting sharp increase in blood glucose level. JP2003-129931

  • Pade N, Hagemann M (2014) Salt acclimation of cyanobacteria and their application in biotechnology. Life (Basel) 5(1):25–49. doi:10.3390/life5010025

    Google Scholar 

  • Pocard JA, Smith LT, Smith GM, Le Rudulier D (1994) A prominent role for glucosylglycerol in the adaptation of Pseudomonas mendocina SKB70 to osmotic stress. J Bacteriol 176(22):6877–6884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed RH, Stewart WDP (1985) Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Mar Biol 88(1):1–9. doi:10.1007/bf00393037

    Article  CAS  Google Scholar 

  • Reed RH, Warr SRC, Kerby NW, Stewart WDP (1986) Osmotic shock-induced release of low-molecular-weight metabolites from free-living and immobilized cyanobacteria. Enzym Microb Technol 8(2):101–104. doi:10.1016/0141-0229(86)90080-3

    Article  CAS  Google Scholar 

  • Robertson DE, Jacobson SA, Morgan F, Berry D, Church GM, Afeyan NB (2011) A new dawn for industrial photosynthesis. Photosynth Res 107(3):269–277. doi:10.1007/s11120-011-9631-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol Lett 243(1):219–226. doi:10.1016/j.femsle.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  • Savakis P, Tan X, Du W, Branco dos Santos F, Lu X, Hellingwerf KJ (2015) Photosynthetic production of glycerol by a recombinant cyanobacterium. J Biotechnol 195:46–51. doi:10.1016/j.jbiotec.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  • Sawangwan T (2015) Glucosylglycerol on performance of prebiotic potential. Funct Foods Health Dis 5(12):427–436

    Google Scholar 

  • Sawangwan T, Goedl C, Nidetzky B (2010) Glucosylglycerol and glucosylglycerate as enzyme stabilizers. Biotechnol J 5(2):187–191. doi:10.1002/biot.200900197

    Article  CAS  PubMed  Google Scholar 

  • Schrader A, Siefken W, Kueper T, Breitenbach U, Gatermann C, Sperling G, Biernoth T, Scherner C, Stab F, Wenck H, Wittern KP, Blatt T (2012) Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol Physiol 25(4):192–199. doi:10.1159/000338190

    Article  CAS  PubMed  Google Scholar 

  • Sievers N, Muders K, Henneberg M, Klähn S, Effmert M, Junghans H, Hagemann M (2013) Establishing glucosylglycerol synthesis in potato (Solanum tuberosum l. cv. Albatros) by expression of the ggpPS gene from Azotobacter vinelandii. J Plant Sci Mol Breed 2(1). doi:10.7243/2050-2389-2-1

  • Song K, Tan X, Liang Y, Lu X (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol Accepted Manuscript. doi:10.1007/s00253-016-7510-z

    Google Scholar 

  • Stirnberg M, Fulda S, Huckauf J, Hagemann M, Krämer R, Marin K (2007) A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp. PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis. Mol Microbiol 63(1):86–102. doi:10.1111/j.1365-2958.2006.05495.x

    Article  CAS  PubMed  Google Scholar 

  • Takenaka F, Uchiyama H (2000) Synthesis of α-D-glucosylglycerol by α-glucosidase and some of its characteristics. Biosci Biotechnol Biochem 64(9):1821–1826. doi:10.1271/bbb.64.1821

    Article  CAS  PubMed  Google Scholar 

  • Takenaka F, Uchiyama H (2001) Effects of α-D-Glucosylglycerol on the in vitro digestion of disaccharides by rat intestinal enzymes. Biosci Biotechnol Biochem 65(7):1458–1463. doi:10.1271/bbb.65.1458

    Article  CAS  PubMed  Google Scholar 

  • Takenaka F, Uchiyama H, Imamura T (2000) Identification of alpha-D-glucosylglycerol in sake. Biosci Biotechnol Biochem 64(2):378–385. doi:10.1271/bbb.64.378

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Du W, Lu X (2015) Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria. Appl Microbiol Biotechnol 99(5):2147–2154. doi:10.1007/s00253-014-6273-7

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Guerra LT, Li Z, Ludwig M, Dismukes GC, Bryant DA (2013) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab Eng 16:56–67. doi:10.1016/j.ymben.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  • Yamamura T, Okumura H (2004) SKIN CLEANSER. JP2004331583

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Lu.

Ethics declarations

Funding

This work was supported by the Shandong Taishan Scholarship (X. Lu), the State Oceanic Administration (SOA) Global Change and Air-Sea Interaction Program (GASI-03-01-02-05 to X. Tan), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2012169 to X. Tan), and the National Science Foundation of China (31301018 to X. Tan).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Luo, Q. & Lu, X. Biosynthesis, biotechnological production, and applications of glucosylglycerols. Appl Microbiol Biotechnol 100, 6131–6139 (2016). https://doi.org/10.1007/s00253-016-7608-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7608-3

Keywords

Navigation