Skip to main content
Log in

Probing phenotypic growth in expanding Bacillus subtilis biofilms

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert’s law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnett TA, Valenzuela D, Riner S, Hageman JH (1983) Production by Bacillis subtilis of brown sporulation-association pigments. Can J Microbiol 29(1):96–101

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branda SS, González-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186(12):3970–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet MGG 168(1):111–115

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15(3):848–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physical Rev 90:1103–1163. doi:10.1152/physrev.00038.2009

    Article  CAS  Google Scholar 

  • Costerton J, Stewart PS, Greenberg E (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Curtis PD, Taylor RG, Welch RD, Shimkets LJ (2007) Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol 189(24):9126–9130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dervaux J, Magniez JC, Libchaber A (2013) On growth and form of Bacillus subtilis biofilms. Interface Focus 4(6):20130051

    Article  Google Scholar 

  • Doherty GP, Bailey K, Lewis PJ (2010) Stage-specific fluorescence intensity of GFP and mCherry during sporulation In Bacillus subtilis. BMC Res Notes 3:303

    PubMed  PubMed Central  Google Scholar 

  • Dubnau D (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubnau D, Provvedi R (2000) Internalizing DNA Res Microbiol 151:475–480

    Article  CAS  PubMed  Google Scholar 

  • Eisele TC, Gabby KL (2014) Review of Reductive Leaching of Iron by Anaerobic Bacteria. Miner Process Extr Metall Rev 35(2):75–105

    Article  CAS  Google Scholar 

  • Evdokimov AG, Pokross ME, Egorov NS, Zaraisky AG, Yampolsky IV, Merzlyak EM, Shkoporov AN, Sander I, Lukyanov KA, Chudakov DM (2006) Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Rep 7:1006–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk MM, Baker SM, Gumpert AM, Segretain D, Buckheit RW (2009) Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles. Mol Biol Cell 20:3342–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardel EJ, Nielsen ME, Grisdela PT, Girguis PR (2012) Duty cycling influences current generation in multi-anode environmental microbial fuel cells. Environ Sci Technol 46(9):5222–5229

    Article  CAS  PubMed  Google Scholar 

  • Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6(6):557–563

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Hottes AK, Shapiro L, McAdams HH (2005) DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol Microbiol 58(5):1340–1353

    Article  CAS  PubMed  Google Scholar 

  • Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55(3):739–749

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. John Wiley & Sons

  • Mazza F (1994) The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm 133(1):3–18

    CAS  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79

    Article  PubMed  Google Scholar 

  • Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586

    Article  CAS  PubMed  Google Scholar 

  • Rudner DZ, Losick R (2001) Morphological coupling in development: lessons from prokaryotes. Dev Cell 1:733–742

    Article  CAS  PubMed  Google Scholar 

  • Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S, Kolter R, Weitz DA, Brenner MP (2012) Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci U S A 109(4):1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shemesh M, Chai Y (2013) A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via the histidine kinase KinD signaling. J Bacteriol 195:2747–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    Article  CAS  PubMed  Google Scholar 

  • Swain MR, Ray RC (2009) Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiol Res 164(2):121–130

    Article  CAS  PubMed  Google Scholar 

  • Verplaetse E, Slamti L, Gohar M, Lereclus D (2015) Cell Differentiation in a Bacillus thuringiensis population during planktonic growth, biofilm formation, and host infection. Mbio 6(3):00138–00115

    Article  Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102

    Article  CAS  PubMed  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H, Chai YR, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11(3):157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations and challenges. IUBMB Life 61(11):1029–1042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Richard Losick’s group and Roberto Kolter’s group for providing triple-fluorescent-labeled Bacillus subtilis strains. This work was supported by the National Science Foundation (DMR-1310266, DMS-1411694), the Harvard Materials Research Science and Engineering Center (DMR-1420570), the National Natural Science Foundation of China (11272002), and the Beijing Higher Education Young Elite Teacher Project (YETP0363).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Wang or David A. Weitz.

Ethics declarations

Funding

The National Science Foundation (DMR-1310266, DMS-1411694), the Harvard Materials Research Science and Engineering Center (DMR-1420570), the National Natural Science Foundation of China (11272002), and the Beijing Higher Education Young Elite Teacher Project (YETP0363).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(PDF 83 kb)

ESM 2

(AVI 1930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Koehler, S.A., Wilking, J.N. et al. Probing phenotypic growth in expanding Bacillus subtilis biofilms. Appl Microbiol Biotechnol 100, 4607–4615 (2016). https://doi.org/10.1007/s00253-016-7461-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7461-4

Keywords

Navigation