Skip to main content
Log in

Identification and engineering of regulation-related genes toward improved kasugamycin production

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Kasugamycin, produced by Streptomyces kasugaensis and Streptomyces microaureus, is an important amino-glycoside family antibiotic and widely used for veterinary and agricultural applications. In the left flanking region of the previously reported kasugamycin gene cluster, four additional genes (two-component system kasW and kasX, MerR-family kasV, and isoprenylcysteine carboxyl methyltransferase kasS) were identified both in the low-yielding S. kasugaensis BCRC12349 and high-yielding S. microaureus XM301. Deletion of regulatory gene kasT abolished kasugamycin production, and its overexpression in BCRC12349 resulted in an increased titer by 186 %. Deletion of kasW, kasX, kasV, and kasS improved kasugamycin production by 12, 19, 194, and 22 %, respectively. qRT-PCR analysis demonstrated that the transcription of kas genes was significantly increased in all the four mutants. Similar gene inactivation was performed in the high-yielding strain S. microaureus XM301. As expected, the deletion of kasW/X resulted in a 58 % increase of the yield from 6 to 9.5 g/L. However, the deletion of kasV and over-expression of kasT had no obvious effect, and the disruption of kasS surprisingly decreased kasugamycin production. In addition, trans-complementation of the kasS mutant with a TTA codon-mutated kasS increased the kasugamycin yield by 20 %. A much higher transcription of kas genes was detected in the high-yielding XM301 than in the low-yielding BCRC12349, which may partially account for the discrepancy of gene inactivation effects between them. Our work not only generated engineered strains with improved kasugamycin yield, but also pointed out that different strategies on manipulating regulatory-related genes should be considered for low-yielding or high-yielding strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baron RA, Casey PJ (2004) Analysis of the kinetic mechanism of recombinant human isoprenylcysteine carboxylmethyltransferase (ICMT). BMC Biochem 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8(2):208–15

    Article  CAS  PubMed  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Lett 27(2–3):145–163

    Article  CAS  Google Scholar 

  • Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos T R Soc B Biological Sci 361(1469):761–8

    Article  CAS  Google Scholar 

  • Chater KF, Chandra G (2008) The use of the rare UUA codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Chen W, Zhai L, Xu D, Huang T, Lin S, Zhou X, Deng Z (2011) Identification of the gene cluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471. Mol BioSyst 7(3):920–7

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Nakashima N, Tamura N, Tamura T (2004) Isolation and characterization of the Rhodococcus opacus thiostrepton-inducible genes tipAL and tipAS: application for recombinant protein expression in Rhodococcus. FEMS Microbiol Lett 237(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Flatt PM, Mahmud T (2007) Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 24(2):358–92

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higo A, Horinouchi S, Ohnishi Y (2011) Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 81(6):1607–22

    Article  CAS  PubMed  Google Scholar 

  • Hotta K, Ogata T, Ishikawa J, Okanishi M, Mizuno S, Morioka M, Naganawa H, Okami Y (1996) Mechanism of multiple aminoglycoside resistance of kasugamycin-producing Streptomyces kasugaensis MB273: involvement of two types of acetyltransferases in resistance to astromicin group antibiotics. J Antibiot 49(7):682–8

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–87

    Article  CAS  PubMed  Google Scholar 

  • Hwang KS, Kim HU, Charusanti P, Palsson BO, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32(2):255–68

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Aoki D, Hamada M, Hori M, Tsuchiya KS (2006) DNA sequencing and transcriptional analysis of the kasugamycin biosynthetic gene cluster from Streptomyces kasugaensis M338-M1. J Antibiot 59(1):18–28

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Aoki D, Sato K, Hamada M, Hori M, Tsuchiya KS (2002) kasT gene of Streptomyces kasugaensis M338-M1 encodes a DNA-binding protein which binds to intergenic region of kasU-kasJ in the kasugamycin biosynthesis gene cluster. J Antibiot 55(12):1053–62

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Higashide K, Kinoshita N, Hamada M, Hori M (1998) A 7.6-kb DNA region from Streptomyces kasugaensis M338-M1 includes some genes responsible for kasugamycin biosynthesis. J Antibiot 51:341–52

    Article  CAS  PubMed  Google Scholar 

  • Ikeno S, Ohishi Y, Kinoshita N, Hamada M, Tsuchiya KS, Hori M (2000) ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain. J Antibiot 53:373–84

    Article  CAS  PubMed  Google Scholar 

  • Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I (2009) An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis. Mol Cell 33(2):227–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kojima I, Kasuga K, Kobayashi M, Fukasawa A, Mizuno S, Arisawa A, Akagawa H (2002) The rpoZ gene, encoding the RNA polymerase omega subunit, is required for antibiotic production and morphological differentiation in Streptomyces kasugaensis. J Bacteriol 184(23):6417–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2(7):384–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung KF, Baron R, Ali BR, Magee AI, Seabra MC (2007) Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 282(2):1487–97

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13(3):263–73

    Article  CAS  PubMed  Google Scholar 

  • Olano C, Lombo F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10(5):281–92

    Article  CAS  PubMed  Google Scholar 

  • Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181(1):204–11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L, Bai L, Deng Z (2011) Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 92(2):337–45

    Article  CAS  PubMed  Google Scholar 

  • Santos BF, Rodriguez GA, Sola LA, Martin JF (2009) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72(1):53–68

    Article  Google Scholar 

  • Sola LA, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–8

    Article  Google Scholar 

  • Sola LA, Rodriguez GA, Amin R, Wohlleben W, Martin JF (2013) Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. Nucleic Acids Res 41:1767–82

    Article  Google Scholar 

  • Tomono A, Tsai Y, Yamazaki H, Ohnishi Y, Horinouchi S (2005) Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 187(16):5595–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang R, Mast Y, Wang J, Zhang W, Zhao G, Wohlleben W, Lu Y, Jiang W (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87(1):30–48

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CJ, Hughes T, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4(4):417–426

    CAS  PubMed  Google Scholar 

  • Yang J, Kulkarni K, Manolaridis I, Zhang Z, Dodd RB, Mas DC, Barford D (2011) Mechanism of isoprenylcysteine carboxyl methylation from the crystal structure of the integral membrane methyltransferase ICMT. Mol Cell 44(6):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Zhu H, Dang F, Zhang W, Qin Z, Yang S, Tan H, Lu Y, Jiang W (2012) Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85(3):535–56

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xiang S, Dai X, Yang K (2013) A simplified diphenylamine colorimetric method for growth quantification. Appl Microbiol Biotechnol 97:5069–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (nos. 2012AA02A706, 2012AA022107, and 2012CB721005), the National Natural Science Foundation of China (nNo. 31470157), and the Program of University of Michigan – Shanghai Jiao Tong University Collaboration on Biomedical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linquan Bai or Lin Cheng.

Ethics declarations

Conflict of Interest

Chenchen Zhu declares that she has no conflict of interest. Qianjin Kang declares that he has no conflict of interest. Linquan Bai declares that he has no conflict of interest. Lin Cheng declares that he has no conflict of interest. Zixin Deng declares that he has no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Kang, Q., Bai, L. et al. Identification and engineering of regulation-related genes toward improved kasugamycin production. Appl Microbiol Biotechnol 100, 1811–1821 (2016). https://doi.org/10.1007/s00253-015-7082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7082-3

Keywords

Navigation