Skip to main content

Advertisement

Log in

Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Temperature-phased anaerobic digestion (TPAD) has gained increasing attention because it provides the flexibility to operate digesters under conditions that enhance overall digester performance. However, research on impact of organic overloading rate (OLR) to microbiota of TPAD systems was limited. In this study, we investigated the composition and successions of the microbiota in both the thermophilic and the mesophilic digesters of a laboratory-scale TPAD system co-digesting dairy manure and waste whey before and during organic overloading. The thermophilic and the mesophilic digesters were operated at 50 and 35 °C, respectively, with a hydraulic retention time (HRT) of 10 days for each digester. High OLR (dairy manure with 5 % total solid and waste whey of ≥60.4 g chemical oxygen demand (COD)/l/day) resulted in decrease in pH and in biogas production and accumulation of volatile fatty acids (VFAs) in the thermophilic digester, while the mesophilic digester remained unchanged except a transient increase in biogas production. Both denaturant gradient gel electrophoresis (DGGE) and Illumina sequencing of 16S ribosomal RNA (rRNA) gene amplicons showed dramatic change in microbiota composition and profound successions of both bacterial and methanogenic communities. During the overloading, Thermotogae was replaced by Proteobacteria, while Methanobrevibacter and archaeon classified as WCHD3-02 grew in predominance at the expense of Methanoculleus in the thermophilic digester, whereas Methanosarcina dominated the methanogenic community, while Methanobacterium and Methanobrevibacter became less predominant in the mesophilic digester. Canonical correspondence analysis (CCA) revealed that digester temperature and pH were the most influential environmental factors that explained much of the variations of the microbiota in this TPAD system when it was overloaded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkaya E, Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass Bioenergy 35:32–39

    Article  CAS  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Environment Federation (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington, DC

    Google Scholar 

  • Banks C, Chesshire M, Stringfellow A (2008) A pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste. Water Sci Technol 58:1475–1481

    Article  CAS  PubMed  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1 (ADM1). IWA Publishing, London

    Google Scholar 

  • Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43(7):1450–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Mundt K, Klocke M (2010) Methanogenic population dynamics during semi-continuous biogas fermentation and acidification by overloading. J Appl Microbiol 109(2):441–450

    CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen CH (2002) Generalized association plots: information visualization via iteratively generated correlation matrices. Stat Sin 12:7–29.33

    Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zamudio Cañas EM, Zhang Y, Zhu Z, He Q (2012) Impact of substrate overloading on archaeal populations in anaerobic digestion of animal waste. J Appl Microbiol 113(6):1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7(8):1110–1115

    Article  Google Scholar 

  • Conklin A, Stensel HD, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78(5):486–496

  • Delbes D, Moletta R, Godon JJ (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction–single-strand conformation polymorphism analysis. Environ Microbiol 2(5):506–515

    Article  CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(8):1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Ghanimeh SA, Saikaly PE, Li D, El-Fadel M (2013) Population dynamics during startup of thermophilic anaerobic digesters: the mixing factor. Waste Manag 33(11):2211–2218

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

  • Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72(2):1623–1630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huber R, Hanning M (2005) Thermotogales. The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn (DworkinM, ed), http://link.springer-ny.com/link/service/books/10125. Springer-Verlag, New York

  • Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28(2):244–250

    Article  PubMed Central  PubMed  Google Scholar 

  • Jabbour D, Sorger A, Sahm K, Antranikian G (2013) A highly thermoactive and salt-tolerant α-amylase isolated from a pilot-plant biogas reactor. Appl Microbiol Biotechnol 97(7):2971–2978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janse I, Bok J, Zwart G (2004) A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. J Microbiol Methods 57(2):279–281

    Article  CAS  PubMed  Google Scholar 

  • Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HW, Han SK, Shin HS (2004) Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process. Water Sci Technol 50(9):107–114

    CAS  PubMed  Google Scholar 

  • Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Park JH, Kang HJ, Lee YH, Lee TJ, Park HD (2013) Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresour Technol 145:25–32

    Article  CAS  PubMed  Google Scholar 

  • Lerm S, Kleyböcker A, Miethling-Graff R, Alawi M, Kasina M, Liebrich M, Würdemann H (2012) Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manag 32(3):389–399

    Article  CAS  PubMed  Google Scholar 

  • Levén L, Eriksson AR, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59(3):683–693

    Article  PubMed  Google Scholar 

  • Lv W, Schanbacher FL, Yu Z (2010) Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol 101(24):9409–9414

    Article  CAS  PubMed  Google Scholar 

  • Lv W, Zhang W, Yu Z (2013a) Evaluation of system performance and microbial communities of a temperature-phased anaerobic digestion system treating dairy manure: thermophilic digester operated at acidic pH. Bioresour Technol 142:625–632

    Article  CAS  PubMed  Google Scholar 

  • Lv W, Zhang W, Yu Z (2013b) Evaluation of system performances and microbial communities of two temperature-phased anaerobic digestion systems treating dairy manure. Bioresour Technol 143:431–438

    Article  CAS  PubMed  Google Scholar 

  • Maune MW, Tanner RS (2012a) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62(4):832–838

    Article  CAS  PubMed  Google Scholar 

  • Maune MW, Tanner RS (2012b) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62:832–838

    Article  CAS  PubMed  Google Scholar 

  • McMahon KD, Zheng D, Stams AJ, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87(7):823–834

    Article  CAS  PubMed  Google Scholar 

  • Menes RJ, Muxí L (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 52(1):157–164

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Thomas P, Ramirez F, Casalot L, Cayol JL, Garcia JL, Ollivier B (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54(1):169–174

    Article  CAS  PubMed  Google Scholar 

  • Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J (2014) Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One 9(4):e94249

    Article  PubMed Central  PubMed  Google Scholar 

  • Nesbø CL, Dlutek M, Zhaxybayeva O, Doolittle WF (2006) Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Appl Environ Microbiol 72(7):5061–5068

    Article  PubMed Central  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed Central  PubMed  Google Scholar 

  • Pycke BF, Etchebehere C, Van de Caveye P, Negroni A, Verstraete W, Boon N (2011) A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities. Water Sci Technol 63(4):769–775

    Article  CAS  PubMed  Google Scholar 

  • Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB (2013) Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour Technol 143:512–518

    Article  CAS  PubMed  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riau V, De la Rubia MA, Pérez M (2010) Temperature-phased anaerobic digestion (TPAD) to obtain class A biosolids: a semi-continuous study. Bioresour Technol 101(8):2706–2712

    Article  CAS  PubMed  Google Scholar 

  • Sangwan P, Chen X, Hugenholtz P, Janssen PH (2004) Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl Environ Microbiol 70(10):5875–5881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santha H, Sandino J, Shimp GF, Sung S (2006) Performance evaluation of a ‘sequential-batch’ temperature-phased anaerobic digestion (TPAD) scheme for producing class A biosolids. Water Environ Res 78(3):221–226

    Article  CAS  PubMed  Google Scholar 

  • Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111:41–46

    Article  CAS  PubMed  Google Scholar 

  • Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52(4):1081–1087

    CAS  PubMed  Google Scholar 

  • Steinberg LM, Regan JM (2011) Response of lab-scale methanogenic reactors inoculated from different sources to organic loading rate shocks. Bioresour Technol 102(19):8790–8798

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626

    Article  CAS  PubMed  Google Scholar 

  • Tale VP, Maki JS, Struble CA, Zitomer DH (2011) Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res 45(16):5249–5256

    Article  CAS  PubMed  Google Scholar 

  • Vandenburgh SR, Ellis TG (2002) Effect of varying solids concentration and organic loading on the performance of temperature phased anaerobic digestion process. Water Environ Res 74(2):142–148

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss A, Jérôme V, Freitag R, Mayer HK (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81(1):163–173

    Article  CAS  PubMed  Google Scholar 

  • Werner JJ, Zhou D, Caporaso JG, Knight R, Angenent LT (2012) Comparison of Illumina paired-end and single-direction sequencing for microbial 16S rRNA gene amplicon surveys. ISME J 6:1273–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu HM, Tien YJ, Chen C (2010) GAP: a graphical environment for matrix visualization and cluster analysis. Comput Stat Data Anal 54:767–778

    Article  Google Scholar 

  • Yan JQ, Lo KV, Pinder KL (1993) Instability caused by high strength of cheese whey in a UASB reactor. Biotechnol Bioeng 41:700–706

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Morrison M (2004a) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Z, Morrison M (2004b) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808–812

    CAS  PubMed  Google Scholar 

  • Yu Z, García-González R, Schanbacher FL, Morrison M (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74(3):889–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Z, Meng Q, Yu Z (2011) Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl Environ Microbiol 77(8):2634–2639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuo Z, Wu S, Zhang W, Dong R (2013) Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresour Technol 146:556–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a Department of Energy (DOE) award (DE-FG36-05GO85010) and a US Department of Agriculture/National Institute of Food and Agriculture (USDA/NIFA) award (2012-10008-20302).

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtang Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLSX 147 kb)

Fig. S1

(PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Abraham, C., Nelson, M.C. et al. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey. Appl Microbiol Biotechnol 99, 8777–8792 (2015). https://doi.org/10.1007/s00253-015-6738-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6738-3

Keywords

Navigation