Skip to main content

Advertisement

Log in

Elucidating carbon uptake from vinyl chloride using stable isotope probing and Illumina sequencing

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Vinyl chloride (VC), a known human carcinogen, is a common and persistent groundwater pollutant at many chlorinated solvent contaminated sites. The remediation of such sites is challenging because of the lack of knowledge on the microorganisms responsible for in situ VC degradation. To address this, the microorganisms involved in carbon assimilation from VC were investigated in a culture enriched from contaminated site groundwater using stable isotope probing (SIP) and high-throughput sequencing. The mixed culture was added to aerobic media, and these were amended with labeled (13C-VC) or unlabeled VC (12C-VC). The cultures were sacrificed on days 15, 32, and 45 for DNA extraction. DNA extracts and SIP ultracentrifugation fractions were subject to sequencing as well as quantitative PCR (qPCR) for a functional gene linked to VC-assimilation (etnE). The gene etnE encodes for epoxyalkane coenzyme M transferase, a critical enzyme in the pathway for VC degradation. The relative abundance of phylotypes was compared across ultracentrifugation fractions obtained from the 13C-VC- and 12C-VC-amended cultures. Four phylotypes were more abundant in the heavy fractions (those of greater buoyant density) from the 13C-VC-amended cultures compared to those from the 12C-VC-amended cultures, including Nocardioides, Brevundimonas, Tissierella, and Rhodoferax. Therefore, both a previously identified VC-assimilating genus (Nocardioides) and novel microorganisms were responsible for carbon uptake. Enrichment of etnE with time was observed in the heavy fractions, and etnE sequences illustrated that VC-assimilators harbor similar Nocardioides-like etnE. This research provides novel data on the microorganisms able to assimilate carbon from VC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atashgahi S, Maphosa F, Dogan E, Smidt H, Springael D, Dejonghe W (2013) Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones. FEMS Microbiol Ecol 84(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Barbin A, Bresil H, Croisy A, Jacquignon P, Malaveille C, Montesano R, Bartsch H (1975) Liver-microsome-mediated formation of alkylating-agents from vinyl bromide and vinyl chloride. Biochem Biophys Res Commun 67(2):596–603

    Article  CAS  PubMed  Google Scholar 

  • Begley JF, Hansen E, Wells AK, Fogel S, Begley GS (2009) Assessment and monitoring tools for aerobic bioremediation of vinyl chloride in groundwater. Remediat J 20(1):107–117

    Article  Google Scholar 

  • Begley JF, Czarnecki M, Kemen S, Verardo A, Robb AK, Fogel S, Begley GS (2012) Oxygen and ethene biostimulation for a persistent dilute vinyl chloride plume. Ground Water Monit Remediat 32(1):99–105

    Article  CAS  Google Scholar 

  • Bradley PM (2003) History and ecology of chloroethene biodegradation: A review. Bioremediat J 7(2):81–109

    Article  CAS  Google Scholar 

  • Bucher JR, Cooper G, Haseman JK, Jameson CW, Longnecker M, Kamel F, Maronpot R, Matthews HB, Melnick R, Newbold R (2005) Report on Carcinogens, 11th edn. Public Health Service National Toxicology Program, Research Triangle Park, NC, US Department of Health and Human Services

    Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chuang AS, Jin YO, Schmidt LS, Li YL, Fogel S, Smoler D, Mattes TE (2010) Proteomic analysis of ethene-enriched groundwater microcosms from a vinyl chloride-contaminated site. Environ Sci Technol 44(5):1594–1601

    Article  CAS  PubMed  Google Scholar 

  • Coleman NV, Spain JC (2003) Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microb 69(10):6041–6046

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002a) Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microb 68(6):2726–2730

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002b) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microb 68(12):6162–6171

    Article  CAS  Google Scholar 

  • Danko AS, Luo MZ, Bagwell CE, Brigmon RL, Freedman DL (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microb 70(10):6092–6097

    Article  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing - linking microbial identity to function. Nat Rev Microbiol 3(6):499–504

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elango VK, Liggenstoffer AS, Fathepure BZ (2006) Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp strain TRW-1. Appl Microbiol Biotechnol 72(6):1270–1275

    Article  CAS  PubMed  Google Scholar 

  • Fathepure BZ, Elango VK, Singh H, Bruner MA (2005) Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer. FEMS Microbiol Lett 248(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Gossett JM (1987) Measurement of Henrys Law constants for C1 and C2 chlorinated hydrocarbons. Environ Sci Technol 21(2):202–208

    Article  CAS  Google Scholar 

  • Hartmans S, Debont JAM (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl Environ Microb 58(4):1220–1226

    CAS  Google Scholar 

  • Hartmans S, Debont JAM, Tramper J, Luyben K (1985) Bacterial degradation of vinyl chloride. Biotechnol Lett 7(6):383–388

    Article  CAS  Google Scholar 

  • Jin YO, Mattes TE (2008) Adaptation of aerobic, ethene-assimilating Mycobacterium strains to vinyl chloride as a growth substrate. Environ Sci Technol 42(13):4784–4789

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Mattes TE (2010) A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Environ Sci Technol 44(23):9036–9041

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Mattes TE (2011) Assessment and modification of degenerate qPCR primers that amplify functional genes from etheneotrophs and vinyl chloride-assimilators. Lett Appl Microbiol 53(5):576–580

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Cheung S, Coleman NV, Mattes TE (2010) Association of missense mutations in epoxyalkane Coenzyme M transferase with adaptation of Mycobacterium sp strain JS623 to growth on vinyl chloride. Appl Environ Microb 76(11):3413–3419

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina Sequencing Platform. Appl Environ Microb 79(17):5112–5120

    Article  CAS  Google Scholar 

  • Lueders T, Wagner B, Claus P, Friedrich MW (2004) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 6(1):60–72

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Xie S, Sun W, Li X, Cupples AM (2009) Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl Environ Microb 75(13):4644–4647

    Article  CAS  Google Scholar 

  • Madsen EL (2006) The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr Opin Biotechnol 17(1):92–97

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Coleman NV, Gossett JM, Spain JC (2005) Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch Microbiol 183:95–106

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34(4):445–475

    Article  CAS  PubMed  Google Scholar 

  • Miller TR, Franklin MP, Halden RU (2007) Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS Microbiol Ecol 60(2):299–311

    Article  CAS  PubMed  Google Scholar 

  • Patterson BM, Aravena R, Davis GB, Furness AJ, Bastow TP, Bouchard D (2013) Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. J Contam Hydrol 153:69–77

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gloeckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD (2009) A high-throughput DNA sequence aligner for microbial ecology studies. PLOS 4(12):1–9

  • Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, Aitken MD (2005) Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microb 71(3):1202–1209

    Article  CAS  Google Scholar 

  • Sun WM, Cupples AM (2012) Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microb 78(4):972–980

    Article  CAS  Google Scholar 

  • Sun W, Xie S, Luo C, Cupples AM (2010) Direct link between toluene degradation in contaminated-site microcosms and a Polaromonas strain. Appl Environ Microb 76(3):956–959

    Article  CAS  Google Scholar 

  • Sun W, Sun X, Cupples AM (2012) Anaerobic methyl tert-butyl ether-degrading microorganisms identified in wastewater treatment plant samples by stable isotope probing. Appl Environ Microb 78(8):2973–2980

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor AE, Dolan ME, Bottomley PJ, Semprini L (2007) Utilization of fluoroethene as a surrogate for aerobic vinyl chloride transformation. Environ Sci Technol 41(18):6378–6383

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX Curr Protoc Bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ

  • Verce MF, Ulrich RL, Freedman DL (2000) Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microb 66(8):3535–3542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank James Begley and Bioremediation Consulting, Inc. for coordinating the sampling of Carver, MA groundwater, and Yang Oh Jin for initial development and maintenance of the VC-degrading culture used in this study. This work was funded by a collaborative NSF Grant (number 1233154) awarded to T. E. Mattes and A. M. Cupples.

Conflict of interest

The authors have no conflict of interest with the methods and data described in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Cupples.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paes, F., Liu, X., Mattes, T.E. et al. Elucidating carbon uptake from vinyl chloride using stable isotope probing and Illumina sequencing. Appl Microbiol Biotechnol 99, 7735–7743 (2015). https://doi.org/10.1007/s00253-015-6606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6606-1

Keywords

Navigation