Skip to main content

Advertisement

Log in

Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to produce triacylglycerol (TAG). This enzyme, which is critical to numerous facets of oilseed development, has been highlighted as a genetic engineering target to increase storage lipid production in microorganisms designed for biofuel applications. Here, four transcriptionally active DGAT1 genes were identified and characterized from the oil crop Brassica napus. Overexpression of each BnaDGAT1 in Saccharomyces cerevisiae increased TAG biosynthesis. Further studies showed that adding an N-terminal tag could mask the deleterious influence of the DGATs’ native N-terminal sequences, resulting in increased in vivo accumulation of the polypeptides and an increase of up to about 150-fold in in vitro enzyme activity. The levels of TAG and total lipid fatty acids in S. cerevisiae producing the N-terminally tagged BnaDGAT1.b at 72 h were 53 and 28 % higher than those in cultures producing untagged BnaA.DGAT1.b, respectively. These modified DGATs catalyzed the synthesis of up to 453 mg fatty acid/L by this time point. The results will be of benefit in the biochemical analysis of recombinant DGAT1 produced through heterologous expression in yeast and offer a new approach to increase storage lipid content in yeast for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8(3):277–87. doi:10.1111/j.1467-7652.2009.00458.x

    Article  CAS  PubMed  Google Scholar 

  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96. doi:10.1046/j.1432-1327.2000.00961.x

    Article  CAS  PubMed  Google Scholar 

  • BRAD (2011) Brassica Database. http://brassicadb.org/brad/

  • Brown AP, Johnson P, Rawsthorne S, Hills MJ (1998) Expression and properties of acyl-CoA binding protein from Brassica napus. Plant Physiol Biochem 36:629–635. doi:10.1016/S0981-9428(98)80011-9

    Article  CAS  Google Scholar 

  • Byers SD, Laroche A, Smith KC, Weselake RJ (1999) Factors enhancing diacylglycerol acyltransferase activity in microsomes from cell-suspension cultures of oilseed rape. Lipids 34:1143–1149. doi:10.1007/s11745-999-0465-6

    Article  CAS  PubMed  Google Scholar 

  • Christie W, Han X (2010) Lipid analysis—isolation, separation, identification and lipidomic analysis, 4th edn. Oily Press, Bridgwater

    Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607. doi:10.1111/j.1365-313X.2008.03442.x

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protocols 2(1):31–34. doi:10.1038/nprot.2007.13

    Article  CAS  Google Scholar 

  • Hamilton R, Watanabe CK, de Boer HA (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 15(8):3581–3593. doi:10.1093/nar/15.8.3581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H (2007) DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the ∆snf2 disruptant of Saccharomyces cerevisiae. Biochem J 408(1):61–8. doi:10.1042/bj20070449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Shibakami M (2010) Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the ∆snf2 disruptant produces a significant increase in its enzyme activity. Appl Microbiol Biotechnol 88(1):105–15. doi:10.1007/s00253-010-2725-x

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97(16):7345–55. doi:10.1007/s00253-013-4915-9

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070. doi:10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  • Lackey LG, Paulson SE (2011) Influence of feedstock: air pollution and climate-related emissions from a diesel generator operating on soybean, canola, and yellow grease biodiesel. Energy Fuels 26(1):686–700. doi:10.1021/ef2011904

    Article  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–56. doi:10.1007/s00253-008-1625-9

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu K, Hildebrand D (2010) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45(2):145–157. doi:10.1007/s11745-010-3385-4

    Article  PubMed  Google Scholar 

  • Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52(4):395–408. doi:10.1016/j.plipres.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Liu A-h, Wang J-b (2006) Genomic evolution of Brassica allopolyploids revealed by ISSR marker. Genet Resour Crop Evol 53(3):603–611. doi:10.1007/s10722-004-2951-0

    Article  CAS  Google Scholar 

  • Liu Q, Siloto RMP, Snyder CL, Weselake RJ (2011) Functional and topological analysis of yeast acyl-CoA:diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis. J Biol Chem. doi:10.1074/jbc.M110.204412

    Google Scholar 

  • Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ (2012) Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 51(4):350–77. doi:10.1016/j.plipres.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  • Lung SC, Weselake R (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41(12):1073–1088

    Article  CAS  PubMed  Google Scholar 

  • Mcfie PJ, Stone SL, Banman SL, Stone SJ (2010) Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the N terminus in dimer/tetramer formation. J Biol Chem 285:37377–37387. doi:10.1074/jbc.M110.163691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nykiforuk CL, Laroche A, Weselake RJ (1999) Isolation and sequence analysis of a novel cDNA encoding a putative diacylglycerol acyltransferase from a microspore-derived cell suspension culture of Brassica napus L. cv Jet Neuf. Plant Physiol 120(1207):99–123

    Google Scholar 

  • O’Quin JB, Mullen RT, Dyer JM (2009) Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells. Appl Microbiol Biotechnol 83(1):117–25. doi:10.1007/s00253-008-1826-2

    Article  PubMed  Google Scholar 

  • Ostergaard L, King G (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4(1):10. doi:10.1186/1746-4811-4-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–13. doi:10.1016/j.ymben.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  • Sandager L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277(8):6478–6482. doi:10.1074/jbc.M109109200

    Article  CAS  PubMed  Google Scholar 

  • Séguin-Swartz G, Gugel, R., Rakow, G., and Raney, J.P. Agronomic performance, blackleg resistance and seed quality of doubled haploid lines of Brassica napus summer rape in Canada. In: Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, 2003. p 452–454

  • Shockey JM, Gidda SK, Chapital DC, Kuan J-C, Dhanoa PK, Bland JM, Rothsein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18(9):2294–2313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siloto RM, Madhavji M, Wiehler WB, Burton TL, Boora PS, Laroche A, Weselake RJ (2008) An N-terminal fragment of mouse DGAT1 binds different acyl-CoAs with varying affinity. Biochem Biophys Res Commun 373(3):350–354. doi:10.1016/j.bbrc.2008.06.031

    Article  CAS  PubMed  Google Scholar 

  • Siloto RM, Truksa M, He X, McKeon T, Weselake RJ (2009a) Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids 44(10):963–973. doi:10.1007/s11745-009-3336-0

    Article  CAS  PubMed  Google Scholar 

  • Siloto RMP, Truksa M, Brownfield D, Good AG, Weselake RJ (2009b) Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiol Biochem 47(6):456–461. doi:10.1016/j.plaphy.2008.12.019

    Article  CAS  PubMed  Google Scholar 

  • Sriram SM, Kim BY, Kwon YT (2011) The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 12(11):735–747. doi:10.1038/nrm3217

    Article  CAS  PubMed  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265(33):20144–9

    CAS  PubMed  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. doi:10.1016/j.ymben.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Feng H, Chen WN (2013) Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab Eng 16(0):95–102. doi:10.1016/j.ymben.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-end rule pathway. Annu Rev Biochem 81:261–89. doi:10.1146/annurev-biochem-051710-093308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor DC, Zhang Y, Kumar A, Francis T, Giblin EM, Barton DL, Ferrie JR, Laroche A, Shah S, Zhu W, Snyder CL, Hall L, Rakow G, Harwood JL, Weselake RJ (2009) Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 87(6):533–543

    Article  CAS  Google Scholar 

  • Turchetto-Zolet AC, Maraschin FS, de Morais GL, Cagliari A, Andrade CM, Margis-Pinheiro M, Margis R (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol 11:263. doi:10.1186/1471-2148-11-263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weselake RJ, Madhavji M, Szarka SJ, Patterson NA, Wiehler WB, Nykiforuk CL, Burton TL, Boora PS, Mosimann SC, Foroud NA, Thibault BJ, Moloney MM, Laroche A, Furukawa-Stoffer TL (2006) Acyl-CoA-binding and self-associating properties of a recombinant 13.3 kDa N-terminal fragment of diacylglycerol acyltransferase-1 from oilseed rape. BMC Biochemistry 7:24. doi:10.1186/1471-2091-7-24

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu K, Li R, Hatanaka T, Hildebrand D (2008) Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry 69(5):1119–27. doi:10.1016/j.phytochem.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  • Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO (2013) Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnol Bioeng 110(1):343–7. doi:10.1002/bit.24623

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Iskandarov U, Klotz ET, Stevens RL, Cahoon RE, Nazarenus TJ, Pereira SL, Cahoon EB (2013) A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds. J Exp Bot. doi:10.1093/jxb/ert156

    Google Scholar 

Download references

Acknowledgments

The authors thank Drs. G. Séguin-Swartz and G. Rakow for providing B. napus line DH12075. RJW acknowledges the support provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada, Alberta Enterprise and Advanced Education, Alberta Innovates Bio Solutions, and the Canada Research Chairs Program. MSG is a recipient of the NSERC Graham Bell Canada Graduate Scholarship, the Alberta Innovates Graduate Student NSERC Top-up Award, and the President’s Doctoral Prize of Distinction.

Conflict of interest

The authors have no conflicts of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Weselake.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greer, M.S., Truksa, M., Deng, W. et al. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Appl Microbiol Biotechnol 99, 2243–2253 (2015). https://doi.org/10.1007/s00253-014-6284-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6284-4

Keywords

Navigation