Skip to main content
Log in

Transcriptomic analysis reveals new regulatory roles of Clp signaling in secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lysobacter enzymogenes is a bacterial biological control agent emerging as a new source of antibiotic metabolites, such as heat-stable antifungal factor (HSAF) and the antibacterial factor WAP-8294A2. The regulatory mechanism(s) for antibiotic metabolite biosynthesis remains largely unknown in L. enzymogenes. Clp, a cyclic adenosine monophosphate (cAMP)-receptor-like protein, is shown to function as a global regulator in modulating biocontrol-associated traits in L. enzymogenes. However, the genetic basis of Clp signaling remains unclear. Here, we utilized transcriptome/microarray analysis to determine the Clp regulon in L. enzymogenes. We showed that Clp is a global regulator in gene expression, as the transcription of 775 genes belonging to 19 functional groups was differentially controlled by Clp signaling. Analysis of the Clp regulon detected previously characterized Clp-modulated functions as well as novel loci. These include novel loci involved in antibiotic metabolite biosynthesis and surface motility in L. enzymogenes. We further showed experimentally that Clp signaling played a positive role in regulating the biosynthesis of HSAF and WAP-8294A2, as well as surface motility which is a type-IV-pilus-dependent trait. The regulation by Clp signaling of antibiotic (HSAF and WAP-8294A2) biosynthesis and surface motility was found to be independent. Importantly, we identified a factor Lysobacter acetyltransferase (Lat), a homologue of histone acetyltransferase Hpa2, which was regulated by Clp and involved in HSAF biosynthesis, but not associated with WAP-8294A2 production and surface motility. Overall, our study provided new insights into the regulatory role and molecular mechanism of Clp signaling in L. enzymogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal S, Hunnicutt DW, McBride MJ (1997) Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A 94:12139–12144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aiba H (1985) Transcription of the Escherichia coli adenylate-cyclase gene is negatively regulated by camp-camp receptor protein. J Biol Chem 260(5):3063–3070

    PubMed  CAS  Google Scholar 

  • Angus-Hill ML, Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V (1999) Crystal structure of the histone acetyltransferase Hpa2: a tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J Mol Biol 294(5):1311–1325

    Article  PubMed  CAS  Google Scholar 

  • Atlung T, Ingmer H (1997) H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24(1):7–17

    Article  PubMed  CAS  Google Scholar 

  • Beatson SA, Whitchurch CB, Sargent JL, Levesque RC, Mattick JS (2002) Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 184(13):3605–3613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burdman S, Bahar O, Parker JK, De La Fuente L (2011) Involvement of type IV pili in pathogenicity of plant pathogenic bacteria. Genes 2(4):706–735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with high base ratio. Int J Syst Bacteriol 28:367–393

    Article  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24(5):1073–1109

    Article  PubMed  CAS  Google Scholar 

  • Dyda F, Klein DC, Hickman AB (2000) GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29:81–103

    Article  PubMed  CAS  Google Scholar 

  • Giesler LJ, Yuen GY (1998) Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot 17(6):509–513

    Article  Google Scholar 

  • Gorshkova I, Moore JL, McKenney KH, Schwarz FP (1995) Thermodynamics of cyclic nucleotide binding to the cAMP receptor protein and its T127L mutant. J Biol Chem 270(37):21679–21683

    Article  PubMed  CAS  Google Scholar 

  • Gosset G, Zhang ZG, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186(11):3516–3524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gunasekera A, Ebright YW, Ebright RH (1992) DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein. J Biol Chem 267(21):14713–14720

    PubMed  CAS  Google Scholar 

  • Guo Y, Guo HY, Zhang L, Xie HY, Zhao X, Wang FX, Li Z, Wang YH, Ma SL, Tao JP, Wang WX, Zhou YX, Yang WP, Cheng J (2005) Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J Virol 79(22):14392–14403

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He YW, Ng AY, Xu M, Lin K, Wang LH, Dong YH, Zhang LH (2007) Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64(2):281–292

    Article  PubMed  CAS  Google Scholar 

  • He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH (2012) Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 95(1):189–199

    Article  PubMed  CAS  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212(1):77–86

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Yuen GY (2005) The role of clp-regulated factors in antagonism against Magnaporthe poae and biological control of summer patch disease of Kentucky bluegrass by Lysobacter enzymogenes C3. Can J Microbiol 51(8):719–723

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Palumbo JD, Zhou JM, Yuen GY (2005) A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol 71(1):261–269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20(8):615–626

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Du LC, Yuen GY, Harris SD (2006) Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 17(3):1218–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lou LL, Qian GL, Xie YX, Hang JL, Chen HT, Zaleta-Rivera K, Li YY, Shen YM, Dussault PH, Liu FQ, Du LC (2011) Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J Am Chem Soc 133(4):643–645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629

    Article  PubMed  Google Scholar 

  • Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM (2013) Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS ONE 8(10):e76487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314

    Article  PubMed  CAS  Google Scholar 

  • Musso RE, Di Lauro R, Adhya S, de Crombrugghe B (1977) Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 12(3):847–854

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Landsman D (1997) GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 22(5):154–155

    Article  PubMed  CAS  Google Scholar 

  • Pastan I, Adhya S (1976) Cyclic adenosine 5’-monophosphate in Escherichia coli. Bacteriol Rev 40(3):527–551

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patel N, Cornejo M, Lambert D, Craig A, Hillman BI, Kobayashi DY (2011) A multifunctional role for the type IV pilus in the bacterial biological control agent Lysobacter enzymogenes. Phytopathology 101(6):S138

    Google Scholar 

  • Pesavento C, Hengge R (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12(2):170–176

    Article  PubMed  CAS  Google Scholar 

  • Qian GL, Hu BS, Jiang YH, Liu FQ (2009) Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agr Sci China 8(1):68–75

    Article  CAS  Google Scholar 

  • Qian GL, Wang YL, Liu YR, Xu FF, He YW, Du LC, Venturi V, Fan JQ, Hu BS, Liu FQ (2013) Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Appl Environ Microbiol 79(21):6604–6616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qian GL, Xu FF, Venturi V, Du LC, Liu FQ (2014) Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11. Phytopathology 104(3):224–231

    Article  PubMed  CAS  Google Scholar 

  • Qu S, Zhang YQ, Liu L, Wang L, Han YP, Yang RF, Zhou DS, Liu MY (2013) Cyclic AMP receptor protein is a repressor of adenylyl cyclase gene cyaA in Yersinia pestis. Can J Microbiol 59(5):304–310

    Article  PubMed  CAS  Google Scholar 

  • Reverchon S, Expert D, Robert-Baudouy J, Nasser W (1997) The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J Bacteriol 179(11):3500–3508

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi M, Blazy B, Baudras A, Hillen W (1989) Ligand-modulated binding of a gene regulatory protein to DNA. Quantitative analysis of cyclic-AMP induced binding of CRP from Escherichia coli to non-specific and specific DNA targets. J Mol Biol 207(4):783–796

    Article  PubMed  CAS  Google Scholar 

  • Tao F, He YW, Wu DH, Swarup S, Zhang LH (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192(4):1020–1029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ussery DW, Hinton JC, Jordi BJ, Granum PE, Seirafi A, Stephen RJ, Tupper AE, Berridge G, Sidebotham JM, Higgins CF (1994) The chromatin-associated protein H-NS. Biochimie 76(10–11):968–980

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Qian GL, Li YY, Wang YS, Wang YL, Wright S, Li YZ, Shen YM, Liu FQ, Du LC (2013) Biosynthetic mechanism for sunscreens of the biocontrol agent Lysobacter enzymogenes. PLoS ONE 8(6):e66633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams RM, Rimsky S (1997) Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol Lett 156(2):175–185

    Article  PubMed  CAS  Google Scholar 

  • Xie YX, Wright S, Shen YM, Du LC (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29(11):1277–1287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu FG, Zaleta-Rivera K, Zhu XC, Huffman J, Millet JC, Harris SD, Yuen GY, Li XC, Du LC (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Ch 51(1):64–72

    Article  CAS  Google Scholar 

  • Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89(9):817–822

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Li YY, Qian GL, Wang Y, Chen HT, Li YZ, Liu FQ, Shen YM, Du LC (2011) Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrob Agents Ch 55(12):5581–5589

    Article  CAS  Google Scholar 

  • Zhang J, Du LC, Liu FQ, Xu FF, Hu BS, Venturi V, Qian GL (2014) Involvement of both PKS and NRPS in antibacterial activity in Lysobacter enzymogenes OH11. FEMS Microbiol Lett 355(2):170–176

    Article  PubMed  CAS  Google Scholar 

  • Zheng DL, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32(19):5874–5893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Robert Wilson Jackson from the University of Reading for critical revisions of this manuscript. We also thank Prof. Gary Y. Yuen from the University of Nebraska-Lincoln for technical support in surface motility. This study was supported by the National Natural Science Foundation of China (31371981), National Basic Research (973) program of China (2015CB150602) Program for New Century Excellent Talents in the University of Ministry of Education of China (NCET-13-0863), Fundamental Research Funds for the Central Universities (No. KYZ201205), Zhongshan Scholars of Nanjing Agricultural University, Special Fund for Agro-Scientific Research in the Public Interest (No. 201303015), the National High Technology Research and Development Program (“863” Program) of China (2011AA10A205), and Modern Agricultural Industry Technology System (No. CARS-29-09). The research in the Du lab is supported in part by the NIH (R01AI097260) and Nebraska Research Initiatives.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoliang Qian or Fengquan Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Y., Zhang, J. et al. Transcriptomic analysis reveals new regulatory roles of Clp signaling in secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11. Appl Microbiol Biotechnol 98, 9009–9020 (2014). https://doi.org/10.1007/s00253-014-6072-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6072-1

Keywords

Navigation