Skip to main content

Advertisement

Log in

High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ethylcarbamate, a carcinogenic compound, is formed from urea and ethanol in rice wine, and enzymatic elimination of urea is always attractive. In the present work, we amplified the acid urease gene cluster ureABCEFGD from Lactobacillus reuteri CICC6124 and constructed robust Lactococcus lactis cell factories for the production of acid urease. The titer of the recombinant acid urease was increased from 1,550 to 11,560 U/L by optimization of the cultivation process. Meanwhile, the enzyme showed satisfied properties toward urea elimination in the rice wine model system. By incubating the enzyme (50 U/L) at 20 °C for 60 h, about 95.8 % of urea in rice wine was removed. Interestingly, this acid urease also exhibited activity toward ethylcarbamate. The results demonstrated that this recombinant acid urease has great potential in the elimination of urea in rice wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrich L, Esti M, Moresi M (2010) Urea degradation in some white wines by immobilized acid urease in a stirred bioreactor. J Agric Food Chem 58:6747–6753

    Article  CAS  PubMed  Google Scholar 

  • Battaglia R, Conacher HB, Page BD (1990) Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. Food Addit Contam 7:477–496

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Clancy KA, Burne RA (1996) Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque Streptococcus. Infect Immun 64:585–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahabieh MS, Husnik JI, Van Vuuren HJ (2010) Functional enhancement of sake yeast strains to minimize the production of ethylcarbamate in sake wine. J Appl Microbiol 109:963–973

    Article  CAS  PubMed  Google Scholar 

  • de Ruyter PG, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667

    PubMed Central  PubMed  Google Scholar 

  • de Vos WM (1999) Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2:289–295

    Article  PubMed  Google Scholar 

  • Esti M, Fidaleo M, Moresi M, Tamborra P (2007) Modeling of urea degradation in white and rose wines by acid urease. J Agric Food Chem 55:2590–2596

    Article  CAS  PubMed  Google Scholar 

  • Fidaleo M, Esti M, Moresi M (2006) Assessment of urea degradation rate in model wine solutions by acid urease from Lactobacillus fermentum. J Agric Food Chem 54:6226–6235

    Article  CAS  PubMed  Google Scholar 

  • Hu LT, Mobley HLT (1993) Expression of catalytically active recombinant helicobacter-pylori urease at wild-type levels in Escherichia coli. Infect Immun 61:2563–2569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268:998–1004

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto S, Sumino Y, Kawahara K, Yamazaki E, Nakatsui I (1989) Purification and characterization of acid urease from Lactobacillus reuteri. Agric Biol Chem 53:1119–1125

    Article  CAS  Google Scholar 

  • Kakimoto S, Sumino Y, Kawahara K, Yamazaki E, Nakatsui I (1990a) Properties of acid ureases from Lactobacillus and Streptococcus strains. Agric Biol Chem 54:381–386

    Article  CAS  Google Scholar 

  • Kakimoto S, Sumino Y, Kawahara K, Yamazaki E, Nakatsui I (1990b) Purification and characterization of acid urease from Lactobacillus fermentum. Appl Microbiol Biotechnol 32:538–543

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21

    Article  CAS  Google Scholar 

  • Liang X, Zhang L, Zhong J, Huan L (2007) Secretory expression of a heterologous nattokinase in Lactococcus lactis. Appl Microbiol Biotechnol 75:95–101

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xu Y, Nie Y, Zhao GA (2012) Optimization production of acid urease by Enterobacter sp in an approach to reduce urea in Chinese rice wine. Bioproc Biosyst Eng 35:651–657

    Article  CAS  Google Scholar 

  • Maischberger T, Mierau I, Peterbauer CK, Hugenholtz J, Haltrich D (2010) High-level expression of Lactobacillus beta-galactosidases in Lactococcus lactis using the food-Grade, nisin-controlled expression system NICE. J Agric Food Chem 58:2279–2287

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microb Cell Factories 4:15

    Article  Google Scholar 

  • Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T (1999) Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J Biotechnol 68:227–236

    Article  CAS  PubMed  Google Scholar 

  • Mobley HL, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohapatra BR, Bapuji M (1997) Characterization of urethanase from Micrococcus species associated with the marine sponge (Spirastrella species). Lett Appl Microbiol 25:393–396

    Article  CAS  Google Scholar 

  • Mora D, Fortina MG, Parini C, Ricci G, Gatti M, Giraffa G, Manachini PL (2002) Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products. J Appl Microbiol 93:278–287

    Article  CAS  PubMed  Google Scholar 

  • Mora D, Maguin E, Masiero M, Parini C, Ricci G, Manachini PL, Daffonchio D (2004) Characterization of urease genes cluster of Streptococcus thermophilus. J Appl Microbiol 96:209–219

    Article  CAS  PubMed  Google Scholar 

  • Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL (2005) Urease biogenesis in Streptococcus thermophilus. Res Microbiol 156:897–903

    Article  CAS  PubMed  Google Scholar 

  • Ough CS (1976) Ethylcarbamate in fermented beverages and foods. J Agric Food Chem 24:328–331

    Article  CAS  PubMed  Google Scholar 

  • Ough CS, Trioli G (1988) Urea removal from wine by an acid urease. Am J Enol Vitic 39:303–307

    CAS  Google Scholar 

  • Peterbauer C, Maischberger T, Haltrich D (2011) Food-grade gene expression in lactic acid bacteria. Biotechnol J 6:1147–1161

    Article  CAS  PubMed  Google Scholar 

  • Sandine BE, Terzaghi WE (1975) Improved medium for lactic Streptococci and their bacteriophages. Appl Microbiol 29:807–813

    PubMed Central  PubMed  Google Scholar 

  • Schehl B, Senn T, Lachenmeier DW, Rodicio R, Heinisch JJ (2007) Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Appl Microbiol Biotechnol 74:843–850

    Article  CAS  PubMed  Google Scholar 

  • Shaw AJ, Covalla SF, Miller BB, Firliet BT, Hogsett DA, Herring CD (2012) Urease expression in a Thermoanaero bacterium Saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 14:528–532

    Article  PubMed  Google Scholar 

  • Siren N, Salonen K, Leisola M, Nyyssola A (2008) A new and efficient phosphate starvation inducible expression system for Lactococcus lactis. Appl Microbiol Biotechnol 79:803–810

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Benno Y, Mitsuoka T, Takebe S, Kobashi K, Hase J (1979) Urease-producing species of intestinal anaerobes and their activities. Appl Environ Microbiol 37:379–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wozny MA, Bryant MP, Holdeman LV, Moore WE (1977) Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl Environ Microbiol 33:1097–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazaki E, Kakimoto S, Sumino Y, Nakatsui I (1990) Characteristics of acid urease from Streptococcus mitior. Agric Biol Chem 54:2433–2435

    Article  CAS  Google Scholar 

  • Yang LQ, Wang SH, Tian YP (2010) Purification, properties, and application of a novel acid urease from Enterobacter sp. Appl Biochem Biotechnol 160:303–313

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zou H, Fu J, Zhou J, Du G, Chen J (2014) Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethylcarbamate in a model rice wine system. Appl Environ Microbiol 80:392–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zotta T, Ricciardi A, Rossano R, Parente E (2008) Urease production by Streptococcus thermophilus. Food Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate Professor Byong Lee at Jiangnan University for his discussion and revision. This work was financially supported by the Major State Basic Research Development Program of China (973 Program, 2012CB720802 and 2012CB720806), the National High Technology Research and Development Program of China (863 Program, 2011AA100905), Program for Changjiang Scholars and Innovative Research Team in University (no. IRT1135), the National Science Foundation for Post-doctoral Scientists of China (2013 M540414), the Jiangsu Planned Projects for Postdoctoral Research Funds (1301010B), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Kang or Guocheng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kang, Z., Zhou, J. et al. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol 99, 301–308 (2015). https://doi.org/10.1007/s00253-014-5916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5916-z

Keywords

Navigation