Skip to main content

Advertisement

Log in

Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils under anoxic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aakra A, Hesselsoe M, Bakken IR (2000) Surface attachment of ammonia-oxidizing bacteria in soil. Microbiol Ecol 39:222–235

    CAS  Google Scholar 

  • Avrahami S, Conrad R (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69:6152–6164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoi Y, Masaki Y, Tsuneda S, Hirata A (2004) Quantitative analysis of amoA mRNA expression as a new biomarker of ammonia oxidation activities in a complex microbial community. Lett Appl Microbiol 39:477–482

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li M, Dang H, Gu J-D (2011a) Responses of aerobic and anaerobic ammonia/ammonium-oxidizing microorganisms to anthropogenic pollution in coastal marine environments. Method Enzymol 496:35–62

    Article  CAS  Google Scholar 

  • Cao H, Li M, Hong Y, Gu J-D (2011b) Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 34:513–523

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Hong Y, Li M, Gu J-D (2011c) Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River Estuary to the South China Sea. Anton Leeuw Int J G 100:545–556

    Article  Google Scholar 

  • Cao H, Hong Y, Li M, Gu J-D (2011d) Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the Western Pacific. Microb Ecol 62:813–823

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao H, Hong Y, Li M, Gu J-D (2012a) Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl Microbiol Biotechnol 94:247–259

    Article  CAS  Google Scholar 

  • Cao H, Hong Y, Li M, Gu J-D (2012b) Lower abundance of ammonia-oxidizing archaea than ammonia-oxidizing bacteria in the subsurface sediments of the northern South China Sea. Geomicrobiol J 29:1–8

    Article  CAS  Google Scholar 

  • Chen XP, Zhu YG, Xia Y, Shen JP, He JZ (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987

    Article  CAS  PubMed  Google Scholar 

  • Chu HY, Morimoto S, Fujii T, Yagi K, Nishimura S (2009) Soil ammonia-oxidizing bacterial communities in paddy rice fields as affected by upland conversion history. Soil Sci Soc Am J 73(6):2026–2031

    Article  CAS  Google Scholar 

  • Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11:1194–1207

    Article  CAS  PubMed  Google Scholar 

  • Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–629

    Article  CAS  Google Scholar 

  • Diab S, Kochba M, Mires D, Avnimelech Y (1992) Combined intensive-extensive (CIE) pond system A: inorganic nitrogen transformations. Aquaculture 101:33–35

    Article  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR, Zehnder AJ (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, O'Mullan GD, Ward BB (2003) Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1:129–140

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freitag TE, Prosser JI (2003) Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl Environ Microbiol 69:1359–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freitag TE, Prosser JI (2004) Differences between betaproteobacterial ammonia-oxidizing communities in marine sediments and those in overlying water. Appl Environ Microbiol 70:3789–3793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glasel JA (1995) Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratio. Biothech 18:62–63

    CAS  Google Scholar 

  • Han P, Gu J-D (2013) More refined diversity of anammox bacteria recovered and distribution in different ecosystems. Appl Microbiol Biotechnol 97:3653–3663

    Article  CAS  PubMed  Google Scholar 

  • Han P, Li M, Gu J-D (2013) Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5169-2

    Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  PubMed  Google Scholar 

  • Herrmann M, Hädrich A, Küsel K (2012) Predominance of thaumarchaeal ammonia oxidizer abundance and transcriptional activity in an acidic fen. Environ Microbiol 14:3013–3025

    Article  CAS  PubMed  Google Scholar 

  • Hooper AT, Vannelli DB, Arciero D (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67

    Article  CAS  PubMed  Google Scholar 

  • Hulth S, Aller RC, Gilbert F (1999) Coupled anoxic nitrification/manganese reduction in marine sediments. Geochim Cosmochim Acta 63:49–66

    Article  CAS  Google Scholar 

  • Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME J 4:450–454

    Article  Google Scholar 

  • Jia ZJ, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Dong H, Yu B, Lv G, Deng S, Nicole B, Dai M (2009) Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, Northwestern China. Geomicrobiol J 26:199–211

    Article  CAS  Google Scholar 

  • Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, Op den Camp HJM, Harhangi HR, Janssen-Megens EM, Francoijs K-J, Stunnenberg HG, Keltjens JT, Jetten MSM, Strous M (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Ann Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Krsek M, Gaze WH, Morris NZ, Wellington EMH (2006) Gene detection, expression and related enzyme activity in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, pp 217–255

    Chapter  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci U S A 104:7104–7109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen S, Mu BZ, Gu J-D (2010a) Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microb Ecol 60:771–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Mu BZ, Jiang Y, Gu J-D (2011a) Production processes affect prokaryotic amoA gene abundance and distribution in high-temperature petroleum reservoirs. Geomicrobiol J 28:692–704

    Article  CAS  Google Scholar 

  • Li M, Cao H, Hong Y, Gu J-D (2011b) Seasonal dynamics of anammox bacteria in estuarial sediments of Mai Po Nature Reserve revealed by 16S rRNA and hzo genes analysis. Microbes Environ 26:15–22

    Article  CAS  PubMed  Google Scholar 

  • Li M, Cao H, Hong Y, Gu J-D (2011c) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89:1243–1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Hong Y, Klotz MG, Gu J-D (2010b) A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biotechnol 86:781–790

    Article  CAS  PubMed  Google Scholar 

  • Lüdemann H, Arth I, Liesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66:754–762

    Article  PubMed Central  PubMed  Google Scholar 

  • McTavish H, Fuchs J, Hooper A (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metcalfe AC, Krsek M, Gooday GW, Prosser JI, Wellington EM (2002) Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol 68:5042–5050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milner MG, Curtis TP, Davenport RJ (2008) Presence and activity of ammonia-oxidizing bacteria detected amongst the overall bacterial diversity along a physico-chemical gradient of a nitrifying wastewater treatment plant. Water Res 42:2863–2872

    Article  CAS  PubMed  Google Scholar 

  • Miskin IP, Farrimond P, Head IM (1999) Identification of novel bacterial lineages as active members of the microbial populations in a freshwater sediment using rapid RNA extraction procedure and RT-PCR. Microbiol 145:1977–1987

    Article  CAS  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184

    Article  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 743–770

    Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69:7420–7429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onodera Y, Nnakagawa T, Takahashi R, Tokuyama T (2010) Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ 25:28–35

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139

    Article  CAS  PubMed  Google Scholar 

  • Roling WF, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613

    Article  PubMed Central  PubMed  Google Scholar 

  • Rotthauwe J, Witzel K, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saleh-Lakhaa S, Millera M, Campbellb RG, Schneiderc K, Elahimaneshd P, Harta MM, Trevorsa JT (2005) Microbial gene expression in soil : methods, applications and challenges. J Microbiol Methods 63:1–19

    Article  Google Scholar 

  • Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM (2008) Pommerening-Roeser A, op den Camp HJM, Jetten MSM (2008) Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ Microbiol 10:3140–3149

    Article  CAS  PubMed  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephen JR, Kowalchuk GA, Bruns M-AV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of β-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taras MJ (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    PubMed Central  PubMed  Google Scholar 

  • van der Star WRL, Dijkema C, de Waard P, Picioreanu C, Strous M, van Loosdrecht MCM (2010) An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR. Appl Microbiol Biotechnol 86:311–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Gu J-D (2013a) Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl Microbiol Biotechnol 99:1785–1798

    Article  Google Scholar 

  • Wang Y, Gu J-D (2013b) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl Microbiol Biotechnol 97:7015–7033

    Article  CAS  Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescent in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  CAS  PubMed  Google Scholar 

  • Watson SW, Bock E, Harms H, Koops HP, Hooper AA (1989) Nitrifying bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic microbiology, vol 3. Williams and Wilkins, Baltimore, pp 1808–1834

    Google Scholar 

  • Wuchter CB, Abbas MJL, Coolen L, Herfort J, van Bleijswijk P, Timmers M, Strous E, Teira GJ, Herndl JJ, Middelburg S, Schouten JS, Damste S (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xing B, Dudas MJ, Zhang Z, Xu Q (1994) Pedogenetic characteristics of albic soils in the three river plain, Heilongjiang Province. Acta Pedologica Sinica 31:95–104

    Google Scholar 

  • Zeng ZS, Xu Q, Gao ZQ (1997) Albic soil in China. Scientific Publishing House, Beijing

  • Zhu G, Wang S, Wang Y, Wang C, Risgaard PN, Jetten MSM, Yin C (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME J 5:1905–1912

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Ph.D. studentship of The University of Hong Kong (JW). We thank the help and assistance of Mr. Dehui Shi from Honghe State Farm for information about the cultivation history, land use, and sampling on site, and of Ms Zheng Chunyu of Jin Zuo Yue Company for the transportation and logistics provided during the sampling. Laboratory assistance was provided by Jessie Lai at The University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Dong Gu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Dong, H., Wang, W. et al. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Appl Microbiol Biotechnol 98, 2675–2686 (2014). https://doi.org/10.1007/s00253-013-5242-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5242-x

Keywords

Navigation