Skip to main content

Advertisement

Log in

Electricity generation from carbon monoxide and syngas in a microbial fuel cell

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed T, Semmens MJ (1992) Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies. J Membr Sci 69:1–10

    Article  CAS  Google Scholar 

  • Balk M, van Gelder T, Weelink SA, Stams AJM (2008) (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol 74:403–409

    Article  CAS  PubMed  Google Scholar 

  • Baschuk JJ, Li X (2001) Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res 25:695–713

    Article  CAS  Google Scholar 

  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183

    Article  CAS  PubMed  Google Scholar 

  • Birry L, Mehta P, Jaouen F, Dodelet JP, Guiot SR, Tartakovsky B (2010) Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim Acta 56:1505–1511

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun M, Gottschalk G (1982) Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen to carbon dioxide. Zentralbl Bakteriol Microbiol Hyg 1 C3:368–376

    Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen to carbon dioxide. Arch Microbiol 128:288–293

    Article  CAS  PubMed  Google Scholar 

  • Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844

    Article  CAS  PubMed  Google Scholar 

  • Charpentier JC (1981) Advances in chemical engineering, vol 11. Elsevier, USA

    Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Liu H, Logan BE (2005) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  Google Scholar 

  • Chisti Y, Kasper M, Moo-Young M (1990) Mass transfer in external-loop airlift bioreactors using static mixers. Can J Chem Eng 68:45–50

    Article  CAS  Google Scholar 

  • Choi Y (2004) Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull Korean Chem Soc 25:813–818

    Article  CAS  Google Scholar 

  • Côté P, Bersillon J-L, Huyard A (1989) Bubble-free aeration using membranes: mass transfer analysis. J Membr Sci 47:91–106

    Article  Google Scholar 

  • Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidova M, Tarasova N, Mukhitova F, Karpilova I (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol 40:417–425

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Convers Manag 42:1357–1378

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Pror Energy Combust Sci 33:1–18

    Article  CAS  Google Scholar 

  • Drake HL, Daniel SL (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155:869–883

    Article  PubMed  Google Scholar 

  • Drew TB (1981) Adances in chemical engineering, vol 11. Elsevier, USA

    Google Scholar 

  • Ellenberger J, Krishna R (2003) Shaken, not stirred, bubble column reactors: enhancement of mass transfer by vibration excitement. Chem Eng Sci 58:705–710

    Article  CAS  Google Scholar 

  • Faaij A, van Ree R, Waldheim L, Olsson E, Oudhuis A, van Wijk A, Daey-Ouwens C, Turkenburg W (1997) Gasification of biomass wastes and residues for electricity production. Biomass Bioenergy 12:387–407

    Article  Google Scholar 

  • Fadavi A, Chisti Y (2005) Gas–liquid mass transfer in a novel forced circulation loop reactor. Chem Eng J 112:73–80

    Article  CAS  Google Scholar 

  • Gavrilescu M, Roman RV, Tudose RZ (1997) Hydrodynamics in external-loop airlift bioreactors with static mixers. Bioprocess Biosyst Eng 16:93–99

    Article  CAS  Google Scholar 

  • Genthner BRS, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476

    Article  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  PubMed  Google Scholar 

  • HaoYu E, Cheng S, Logan B, Scott K (2009) Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J Appl Electrochem 39:705–711

    Article  CAS  Google Scholar 

  • Harnisch F, Wirth S, Schröder U (2009) Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron(II) phthalocyanine based electrodes. Electrochem Commun 11:2253–2256

    Article  CAS  Google Scholar 

  • Henstra AM, Stams AJM (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henstra A, Sipma J, Rinzema A, Stams J (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  CAS  PubMed  Google Scholar 

  • Herrmann I, Kramm UI, Fiechter S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54:4275–4287

    Article  CAS  Google Scholar 

  • Hickey R, Datta R, Tsai s-P, Basu R (2008) Membrane supported bioreactor for conversion of syngas components to liquid products. US Patent

  • Jasinski R (1964) A new fuel cell cathode Catalyst. Nature 201:1212–1213

    Article  CAS  Google Scholar 

  • Jong BC, Kim BH, Chang IS, Liew PWY, Choo YF, Kang GS (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40:6449–6454

    Article  CAS  PubMed  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashefi K, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a Novel Thermophilic Member of the Geobacteraceae from the "Bag City" Hydrothermal Vent. Appl Environ Microbiol 69:2985–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30

    Article  CAS  Google Scholar 

  • Kim D, Chang IS (2009) Electricity generation from synthesis gas by microbial processes: CO fermentation to microbial fuel cell technology. Bioresour Technol 100:4527–4530

    Article  CAS  PubMed  Google Scholar 

  • Krichnavaruk S, Pavasant P (2002) Analysis of gas–liquid mass transfer in an airlift contactor with perforated plates. Chem Eng J 89:203–211

    Article  CAS  Google Scholar 

  • Lefebvre O, Uzabiaga A, Chang I, Kim B-H, Ng H (2010) Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration. Appl Microbiol Biotechnol 89:1–12. doi:https://doi.org/10.1007/s00253-010-2881-z

    Google Scholar 

  • Logan B (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  PubMed  Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR (2006a) Bug juice: harvesting electricity with microorganisms. Nat Rev Micro 4:497–508

    Article  CAS  Google Scholar 

  • Lovley DR (2006b) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Maness PC, Huang J, Smolinski S, Tek V, Vanzin G (2005) Energy generation from the CO oxidation–hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71:2870–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathis B, Marshall C, Milliken C, Makkar R, Creager S, May H (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78:147–155

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Hussain A, Tartakovsky B, Raghavan V, Neburchilov V, Wang H, Guiot SR (2010) Electricity generation from carbon monoxide in a single chamber microbial fuel cell. Enzyme Microb Technol 46:450–455

    Article  CAS  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969

    Article  CAS  PubMed  Google Scholar 

  • Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  PubMed  Google Scholar 

  • Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022

    Article  CAS  PubMed  Google Scholar 

  • Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958

    Article  CAS  Google Scholar 

  • Ormerod MR (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  PubMed  Google Scholar 

  • Riggs SS, Heindel TJ (2006) Measuring carbon monoxide gas–liquid mass transfer in a stirred tank reactor for syngas fermentation. Biotechnol Prog 22:903–906

    Article  CAS  PubMed  Google Scholar 

  • Savage MD, Wu ZG, Daniel SL, Lundie LL Jr, Drake HL (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott K, Hughes R (1996) Industrial membrane separation technology. Blackie Academic & Professional, Glasgow

    Book  Google Scholar 

  • Singer SW, Hirst MB, Ludden PW (2006) CO-dependent H2 evolution by rhodospirillum rubrum: role of CODH:CooF complex. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1757:1582–1591

    Article  CAS  Google Scholar 

  • Sipma J, Henstra AM, Parshina SN, Lens PNL, Lettinga G, Stams AJM (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 26:41–65

    Article  CAS  PubMed  Google Scholar 

  • Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 56:797–800

    Article  CAS  PubMed  Google Scholar 

  • Slepova TV, Sokolova TG, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2009) Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 59:213–217

    Article  CAS  PubMed  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967

    CAS  PubMed  Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359

    Article  CAS  PubMed  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073

    Article  CAS  PubMed  Google Scholar 

  • Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, Gonzalez JM, Whitman WB, Weigel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11:145–157

    Article  CAS  PubMed  Google Scholar 

  • Sokolova TG, Henstra A-M, Sipma J, Parshina SN, Stams AJM, Lebedinsky AV (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141

    Article  CAS  PubMed  Google Scholar 

  • Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal Today 77:17–49

    Article  CAS  Google Scholar 

  • Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  PubMed  Google Scholar 

  • Tor JM, Kashefi K, Lovley DR (2001) Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67:1363–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugwu CU, Ogbonna JC (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  PubMed  Google Scholar 

  • Vorapongsathorn T, Wongsuchoto P, Pavasant P (2001) Performance of airlift contactors with baffles. Chem Eng J 84:551–556

    Article  CAS  Google Scholar 

  • Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156

    Article  CAS  PubMed  Google Scholar 

  • Zavarzina D, Sokolova T, Tourova T, Chernyh N, Kostrikina N, Bonch-Osmolovskaya E (2007) Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineer Research Council of Canada (NSERC) for financial support (NRC publication no. 53353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tartakovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, A., Guiot, S.R., Mehta, P. et al. Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl Microbiol Biotechnol 90, 827–836 (2011). https://doi.org/10.1007/s00253-011-3188-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3188-4

Keywords

Navigation