Skip to main content

Advertisement

Log in

Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Landfills are large sources of CH4, but a considerable amount of CH4 can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N2O production. To examine the effects of nitrogen and a selective inhibitor on CH4 oxidation and N2O production in situ, 0.5 M of NH4Cl and 0.25 M of KNO3, with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N2O production but had no effect on CH4 oxidation. The addition of phenylacetylene stimulated CH4 oxidation while reducing N2O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N2O production by selectively inhibiting AOAs and/or type II methanotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson IC, Levine JS (1986) Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl Environ Microbiol 51:938–945

    CAS  Google Scholar 

  • Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495

    Article  CAS  Google Scholar 

  • Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38:4891–4899

    Article  CAS  Google Scholar 

  • Berge N, Reinhart D, Townsend T (2005) The fate of nitrogen in bioreactor landfills. Environ Sci Technol 35:365–399

    CAS  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582

    Article  CAS  Google Scholar 

  • Bogner JE, Spokas KA, Burton EA (1997) Kinetics of methane oxidation in a landfill cover soil: temporal variations, a whole-landfill oxidation experiment, and modeling of net CH4 emissions. Environ Sci Technol 31:2504–2514

    Article  CAS  Google Scholar 

  • Borjesson G, Svensson BH (1997) Nitrous oxide emissions from landfill cover soils in Sweden. Tellus B 49:357–363

    Article  Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  Google Scholar 

  • Casciotti KL, Ward BB (2005) Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 52:197–205

    Article  CAS  Google Scholar 

  • Cebron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 62:12–23

    Article  CAS  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    CAS  Google Scholar 

  • Crutzen PJ (1991) Methane’s sinks and sources. Nature 350:380–381

    Article  Google Scholar 

  • Firestone MK, Firestone RB, Tiedje JM (1980) Nitrous oxide production from soils: factors controlling its biological production. Science 208:749–751

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  CAS  Google Scholar 

  • Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between Type I and Type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25:1–17

    Article  CAS  Google Scholar 

  • Halet D, Boon N, Verstraete W (2006) Community dynamics of methanotrophic bacteria during composting of organic matter. J Biosci Bioeng 101:297–302

    Article  CAS  Google Scholar 

  • Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    CAS  Google Scholar 

  • Han JI, Semrau JD (2004) Quantification of gene expression in methanotrophs by competitive reverse transcription-polymerase chain reaction. Environ Microbiol 6:388–399

    Article  CAS  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci 105:2134–2139

    Article  CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: synthesis report. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang QQ, Bakken LR (1999) Nitrous oxide production and methane oxidation by different ammonia oxidizing bacteria. Appl Environ Microbiol 65:2679–2684

    CAS  Google Scholar 

  • Kester RA, de Boer W, Laanbroek HJ (1996) Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples. FEMS Microbiol Ecol 20:111–120

    CAS  Google Scholar 

  • Kightley D, Nedwell D, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61:592–601

    CAS  Google Scholar 

  • Könneke M, Bernhard AE, Torre JR, Walker JB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    CAS  Google Scholar 

  • Leinenger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  Google Scholar 

  • Lee S-W, Keeney DR, Lim D-H, DiSpirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72: 7503–7509

    Article  CAS  Google Scholar 

  • Lee S-W, Im J, DiSpirito A, Bodrossy L, Barcelona M, Semrau J (2009) Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl Microbiol Biotechnol 85:389–403

    Article  CAS  Google Scholar 

  • Lontoh S, DiSpirito AA, Krema CL, Whittaker MR, Hooper AB, Semrau JD (2000) Differential inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane-associated methane monooxygenase by phenylacetylene. Environ Microbiol 2:485–494

    Article  CAS  Google Scholar 

  • Majumdar D (2003) Methane and nitrous oxide emission from irrigated rice fields: proposed mitigation strategies. Curr Sci 84:1317–1326

    CAS  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  Google Scholar 

  • McBride MB, Richards BK, Steenhuis T (2004) Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant Soil 262:71–84

    Article  CAS  Google Scholar 

  • Milke MW (1998) Computer simulation to evaluate the economics of landfill gas recovery. Water Sci Technol 38:201–208

    CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    Article  CAS  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Article  CAS  Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environ Microbiol 5:152–162

    Article  CAS  Google Scholar 

  • Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier forland. Environ Microbiol 7:337–347

    Article  CAS  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  CAS  Google Scholar 

  • Okana Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Article  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  Google Scholar 

  • Park S, Lee CH, Ryu CR, Sung KJ (2009) Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water Air Soil Pollut 196:19–27

    Article  CAS  Google Scholar 

  • Philopoulos A, Ruck J, McCartney D, Felske C (2009) A laboratory-scale comparison of compost and sand-compost-perlite as methane-oxidizing biofilter media. Waste Manage Res 27:138–146

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  CAS  Google Scholar 

  • Reinhart DR, McCreanor PT, Townsend T (2002) The bioreactor landfill: its status and future. Waste Manage Res 20:172–186

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker, molecular fine scale analysis of natural ammonia oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    CAS  Google Scholar 

  • Simon HM, Jahn CE, Bergerud LT, Sliwinski MK, Weimer PJ, Willis DK, Goodman RM (2005) Cultivation of mesophilic crenarchaeotes in enrichment cultures from plant roots. Appl Environ Microbiol 75:4751–4760

    Article  Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. US Department of Agriculture Handbook 18. US Government Printing Office, Washington, DC

  • Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Js C, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6:347–363

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    Article  CAS  Google Scholar 

  • Webster G, Embley TM, Freitag TE, Smith Z, Prosser JI (2005) Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Environ Microbiol 7:676–684

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56:3405–3411

    CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JG (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the field sampling and analyses contributions of Peter Stuurwold and William Lizik (Western Michigan University). The provision of an archaeal amoA clone from Dr. Craig S. Criddle is also gratefully acknowledged. This project was supported by the Department of Energy (DE-FC26-05NT42431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Semrau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Rarefaction analyses of amoA genes from ammonia-oxidizing archaea. OTUs were defined as those with ≥97% nucleotide sequence identity. Error bars represent 95% confidence limits. (GIF 163 kb)

High resolution image file (EPS 373 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, J., Lee, SW., Bodrossy, L. et al. Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure. Appl Microbiol Biotechnol 89, 189–200 (2011). https://doi.org/10.1007/s00253-010-2811-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2811-0

Keywords

Navigation