Skip to main content
Log in

Finding new pathway-specific regulators by clustering method using threshold standard deviation based on DNA chip data of Streptomyces coelicolor

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to identify the regulators involved in antibiotic production or time-specific cellular events, the messenger ribonucleic acid (mRNA) expression data of the two gene clusters, actinorhodin (ACT) and undecylprodigiosin (RED) biosynthetic genes, were clustered with known mRNA expression data of regulators from S. coelicolor using a filtering method based on standard deviation and clustering analysis. The result identified five regulators including two well-known regulators namely, SCO3579 (WlbA) and SCO6722 (SsgD). Using overexpression and deletion of the regulator genes, we were able to identify two regulators, i.e., SCO0608 and SCO6808, playing roles as repressors in antibiotics production and sporulation. This approach can be easily applied to mapping out new regulators related to any interesting target gene clusters showing characteristic expression patterns. The result can also be used to provide insightful information on the selection rules among a large number of regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamidis T, Riggle P, Champness W (1990) Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 172:2962–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias P, Fernandez-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Brian P, Riggle PJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol 178:3221–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Call DR, Bakko MK, Krug MJ, Roberts MC (2003) Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother 47:3290–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dammann T, Wohlleben W (1992) A metalloprotease gene from Streptomyces coelicolor ‘Muller’ and its transcriptional activator, a member of the LysR family. Mol Microbiol 6:2267–2278

    Article  CAS  PubMed  Google Scholar 

  • Draghici S (2003) Data analysis tools for DNA microarrays. Chapman & Hall, Boca Raton, FL, pp 277–283

    Book  Google Scholar 

  • Ehrenreich A (2006) DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 73:255–273

    Article  CAS  PubMed  Google Scholar 

  • Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Gramajo HC, Takano E, Bibb MJ (1996) redD and actII-ORF4, pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2), are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD. J Bacteriol 178:3402–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandvalet C, Rapoport G, Mazodier P (1998) hrcA, encoding the repressor of the groEL genes in Streptomyces albus G, is associated with a second dnaJ gene. J Bacteriol 180:5129–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greie JC, Altendorf K (2007) The K +-translocating KdpFABC complex from Escherichia coli: a P-type ATPase with unique features. J Bioenerg Biomembr 39:397–402

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillerich B, Westpheling J (2006) A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 188:7477–7487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa T, Ashitani K, Yoshikawa K, Nagahisa K, Furusawa C, Katakura Y et al (2006) Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 102:568–571

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem 71:283–299

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi S, Hara O, Beppu T (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol 155:1238–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi S, Kito M, Nishiyama M, Furuya K, Hong SK, Miyake K, Beppu T (1990) Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 95:49–56

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lih CJ, Pan KH, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ et al (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES (2007) Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol 189:4315–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamoto S, Watanabe H, Hesketh A, Ensign JC, Ochi K (1997) Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. Microbiology 143(Pt 4):1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Keijser BJ, van Wezel GP, Canters GW, Vijgenboom E (2002) Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J Bacteriol 184:4420–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater K, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, Norwich, UK

    Google Scholar 

  • Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH (2005) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57:1252–1264

    Article  CAS  PubMed  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Kendall K (1994) Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J Bacteriol 176:3800–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171:1459–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT, Willey JM, Nguyen LD, Nguyen LT, Viollier PH, Thompson CJ (2002) A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol 46:1223–1238

    Article  CAS  PubMed  Google Scholar 

  • Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol 58:929–944

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69:431–439

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Nakagawa T, Horinouchi S (1998) Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 28:743–753

    Article  CAS  PubMed  Google Scholar 

  • Parajuli N, Basnet DB, Chan Lee H, Sohng JK, Liou K (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch Biochem Biophys 425:233–241

    Article  CAS  PubMed  Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    Article  CAS  PubMed  Google Scholar 

  • Santamarta I, Perez-Redondo R, Lorenzana LM, Martin JF, Liras P (2005) Different proteins bind to the butyrolactone receptor protein ARE sequence located upstream of the regulatory ccaR gene of Streptomyces clavuligerus. Mol Microbiol 56:824–835

    Article  CAS  PubMed  Google Scholar 

  • Scheu AK, Martinez E, Soliveri J, Malpartida F (1997) abaB, a putative regulator for secondary metabolism in Streptomyces. FEMS Microbiol Lett 147:29–36

    Article  CAS  PubMed  Google Scholar 

  • Servin-Gonzalez L, Castro C, Perez C, Rubio M, Valdez F (1997) bldA-dependent expression of the Streptomyces exfoliatus M11 lipase gene (lipA) is mediated by the product of a contiguous gene, lipR, encoding a putative transcriptional activator. J Bacteriol 179:7816–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2002) Genomic diversity within the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis. Appl Environ Microbiol 68:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Thuy ML, Kharel MK, Lamichhane R, Lee HC, Suh JW, Liou K, Sohng JK (2005) Expression of 2-deoxy-scyllo-inosose synthase (kanA) from kanamycin gene cluster in Streptomyces lividans. Biotechnol Lett 27:465–470

    Article  CAS  PubMed  Google Scholar 

  • Vohradsky J, Janda I, Grunenfelder B, Berndt P, Roder D, Langen H et al (2003) Proteome of Caulobacter crescentus cell cycle publicly accessible on SWICZ server. Proteomics 3:1874–1882

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the John Innes Center for providing the cosmid library. This work was partially supported by the Korea Science and Engineering Foundation (KOSEF) Grant funded by the Korea Government (MOST; no. R01-2006-000-10234-0) and a grant (Code no. KRF-2005-005-J16002) from Korea Research Foundation, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 728 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YH., Kim, JN., Song, E. et al. Finding new pathway-specific regulators by clustering method using threshold standard deviation based on DNA chip data of Streptomyces coelicolor . Appl Microbiol Biotechnol 80, 709–717 (2008). https://doi.org/10.1007/s00253-008-1574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1574-3

Keywords

Navigation