Skip to main content
Log in

α-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An α-glucosidase from Geobacillus sp. strain HTA-462, one of the deepest sea bacteria isolated from the sediment of the Mariana Trench, was purified to homogeneity and estimated to be a 65-kDa protein by SDS-PAGE. At low ion strength, the enzyme exists in the homodimeric form (130 kDa). It is a thermo- and alkaline-stable enzyme with a half-life of 13.4 h and a maximum hydrolytic activity at 60°C and pH 9.0 in 15 mM glycine–NaOH buffer. The enzyme exclusively hydrolyzed α-1,4-glycosidic linkages of oligosaccharides in an exo-type manner. The enzyme had an overwhelming transglycosylation activity and glycosylated various non-sugar molecules when maltose was used as a sugar donor. It converted maltose to isomaltose. The gene encoding the enzyme was cloned and sequenced. The recombinant enzyme could be extracellularly overproduced by Bacillus subtilis harboring its gene and preserved the primary properties of the native enzyme. Site-directed mutagenesis experiments showed that Asp98 is essential for the enzyme activity in addition to Asp199, Asp326, and Glu256.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chang S, Cohen SN (1979) Polyethylene glycol induced protoplast transformation of Bacillus subtilis. Mol Gen Genet 168:111–115

    Article  CAS  Google Scholar 

  • Chiba S (1997) Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotechnol Biochem 61:1233–1239

    Article  CAS  Google Scholar 

  • Crout DHC, Critchley P, Muller D, Scigelova M, Singh S, Vic G (1999) Application of glycosylases in the synthesis of complex carbohydrates. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 15–23

    Google Scholar 

  • Duan KJ, Sheu DC, Lin CT (1995) Transglucosylation of a fungal alpha-glucosidase. The enzyme properties and correlation of isomaltooligosaccharide production. Ann N Y Acad Sci 750:325–328

    Article  CAS  Google Scholar 

  • Ducret A, Van Oostveen I, Eng JK, Yates JR III, Aebersold R (1998) High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7:706–719

    Article  CAS  Google Scholar 

  • Hasegawa K, Kubota M, Matsuura Y (1999) Roles of catalytic residues in alpha-amylases as evidenced by the structures of the product-complex mutants of a maltotetraose-forming amylase. Protein Eng 12(10):819–824

    Article  CAS  Google Scholar 

  • Hong SH, Marmur J (1986) Primary structure of the maltase gene of the MAL6 locus of Saccharomyces carlsbergensis. J Gene 41:75–84

    Article  CAS  Google Scholar 

  • Inokuchi N, Iwama M, Takahashi T, Irie M (1982) Modification of a glucoamylase from Aspergillus saitoi with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide. J Biochem (Tokyo) 91:125–133

    Article  CAS  Google Scholar 

  • Itoh K, Hara T, Shibata N (1991) Synthesis of maltotriose by maltase purified from rabbit kidney. Biochem Int 24:969–979

    CAS  PubMed  Google Scholar 

  • Izard T, Ellis J (2000) The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism. EMBO J 19:2690–2700

    Article  CAS  Google Scholar 

  • Kanda T, Yatomi H, Makishima S, Amano Y, Nisizawa K (1989) Substrate specificities of exo- and endo-type cellulases in the hydrolysis of β-1,3- and β-1,4-mixed d-glucans. J Biochem 150:127–132

    Article  Google Scholar 

  • Kato N, Suyama S, Shirokane M, Kato M, Kobayashi T, Tsukagoshi N (2002) Novel α-glucosidase from Asperillus nidurans with strong transglycosylation activity. Appl Environ Microbiol 68:1250–1256

    Article  CAS  Google Scholar 

  • Kobayashi I, Tokuda M, Hashimoto H, Konda T, Nakano H, Kitahata S (2003) Purification and characterization of a new type of alpha-glucosidase from Paecilomyces lilacinus that has transglucosylation activity to produce alpha-1,3- and alpha-1,2-linked oligosaccharides. Biosci Biotechnol Biochem 67:29–35

    Article  CAS  Google Scholar 

  • Kurimoto M, Nishimoto T, Nakada T, Chaen H, Fukuda S, Tsujisaka Y (1997) Synthesis by an α-glucosidase of glycosyl-trehaloses with an isomaltosyl residue. Biosci Biotechnol Biochem 61:699–703

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Mala S, Dvorakova H, Hrabal R, Kralova B (1999) Towards regioselective synthesis of oligosaccharides by use of α-glucosidases with different substrate specificity. Carbohydr Res 322:209–218

    Article  CAS  Google Scholar 

  • Matsui H, Chiba S, Shimomura T (1978) Substrate specificity of an α-glucosidase in sugar beet seed. Agric Biol Chem 42:1855–1860

    CAS  Google Scholar 

  • Nakao M, Nakayama T, Harada M, Kakudo A, Ikemoto H, Kobayashi S, Shibano Y (1994) Purification and characterization of a Bacillus sp. SAM1606 thermostable alpha-glucosidase with transglycosylation activity. Appl Microbiol Biotechnol 41:337–343

    Article  CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosideasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  • Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99:996–1001

    Article  CAS  Google Scholar 

  • Shirai T, Hung VS, Akita M, Hatada Y, Ito S, Horikoshi K (2003) Crystallization and preliminary X-ray study of α-glucosidase from Geobacillus sp. strain HTA-462, one of the deepest sea bacteria. Acta Crystallogr, D Biol Crystallogr 59:1278–1279

    Article  Google Scholar 

  • Son M, Mori H, Okuyama M, Kimura A, Chiba S (2003) Evidence of intramolecular transglycosylation catalyzed by an α-glucosidase. J Appl Glycosci 50:41–43

    Article  CAS  Google Scholar 

  • Sumitomo N, Ozaki K, Hitomi J, Kawaminami S, Kobayashi T, Kawai S, Ito S (1995) Application of upstream region of a Bacillus endoglucanase gene to high-level expression of foreign gene in Bacillus substilis. Biosci Biotechnol Biochem 59:2172–2175

    Article  CAS  Google Scholar 

  • Suzuki Y, Nobiki M, Matsuda M, Sawai T (1997) Bacillus thermoamyloliquefaciens KP1071 alpha-glucosidase II is a thermostable M(r) 540,000 homohexameric alpha-glucosidase with both exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Eur J Biochem 245:129–136

    Article  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of Mariana Trench. FEBS Microbiol Lett 152:279–285

    Article  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  CAS  Google Scholar 

  • Takii Y, Daimon K, Suzuki Y (1992) Cloning and expression of a thermostable exo-α-1,4-glucosidase gene from Bacillus stearothermophilus ATCC12016 in Escherichia coli. Appl Microbiol Biotechnol 38:243–247

    Article  CAS  Google Scholar 

  • Takii Y, Takahashi K, Yamamoto K, Sogabe Y, Suzuki Y (1996) Bacillus stearothermophilus ATCC12016 α-glucosidase specific for α-1,4 bonds of maltosaccharides and α-glucans shows high amino acid sequence similarities to seven α-d-glucohydrolases with different substrate specificity. Appl Microbiol Biotechnol 44:629–634

    Article  CAS  Google Scholar 

  • Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418

    Article  CAS  Google Scholar 

  • Watanabe K, Miyake K, Suzuki Y (2001) Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Biosci Biotechnol Biochem 65:2058–2064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. H. Takami for providing us with the organisms used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vo Si Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, V.S., Hatada, Y., Goda, S. et al. α-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates. Appl Microbiol Biotechnol 68, 757–765 (2005). https://doi.org/10.1007/s00253-005-1977-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1977-3

Keywords

Navigation