Skip to main content
Log in

Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B1 and probiotics

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Poultry are highly susceptible to the immunotoxic effects of the food-borne mycotoxin aflatoxin B1 (AFB1). Exposure impairs cell-mediated and humoral immunity, limits vaccine efficacy, and increases the incidence of costly secondary infections. We investigated the molecular mechanisms of AFB1 immunotoxicity and the ability of a Lactobacillus-based probiotic to protect against aflatoxicosis in the domestic turkey (Meleagris gallopavo). The spleen transcriptome was examined by RNA sequencing (RNA-seq) of 12 individuals representing four treatment groups. Sequences (6.9 Gb) were de novo assembled to produce over 270,000 predicted transcripts and transcript fragments. Differential expression analysis identified 982 transcripts with statistical significance in at least one comparison between treatment groups. Transcripts with known immune functions comprised 27.6 % of significant expression changes in the AFB1-exposed group. Short exposure to AFB1 suppressed innate immune transcripts, especially from antimicrobial genes, but increased the expression of transcripts from E3 ubiquitin-protein ligase CBL-B and multiple interleukin-2 response genes. Up-regulation of transcripts from lymphotactin, granzyme A, and perforin 1 could indicate either increased cytotoxic potential or activation-induced cell death in the spleen during aflatoxicosis. Supplementation with probiotics was found to ameliorate AFB1-induced expression changes for multiple transcripts from antimicrobial and IL-2-response genes. However, probiotics had an overall suppressive effect on immune-related transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azuma N, Seo HC, Lie O, Fu Q, Gould RM, Hiraiwa M, Burt DW, Paton IR, Morrice DR, O’Brien JS, Kishimoto Y (1998) Cloning, expression and map assignment of chicken prosaposin. Biochem J 330:321–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Azzam AH, Gabal MA (1998) Aflatoxin and immunity in layer hens. Avian Pathol 27:570–577

    Article  CAS  PubMed  Google Scholar 

  • Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A, Mariathasan S, Bouchard D, Wakeham A, Itie A, Le J, Ohashi PS, Sarosi I, Nishina H, Lipkowitz S, Penninger JM (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403:211–216

    Article  CAS  PubMed  Google Scholar 

  • Brisbin JT, Zhou H, Gong J, Sabour P, Akbari MR, Haghighi HR, Yu H, Clarke A, Sarson AJ, Sharif S (2008) Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Dev Comp Immunol 32:563–574

    Article  CAS  PubMed  Google Scholar 

  • CAST (2003) Mycotoxins: Risks in plant, animal and human systems, No. 139. Ames

  • Cerdan C, Devilard E, Xerri L, Olive D (2001) The C-class chemokine lymphotactin costimulates the apoptosis of human CD4(+) T cells. Blood 97:2205–2212

    Article  CAS  PubMed  Google Scholar 

  • Chang CF, Hamilton PB (1979) Impaired phagocytosis by heterophils from chickens during aflatoxicosis. Toxicol Appl Pharmacol 48:459–466

    Article  CAS  PubMed  Google Scholar 

  • Chang CF, Hamilton PB (1982) Increased severity and new symptoms of infectious bursal disease during aflatoxicosis in broiler chickens. Poult Sci 61:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Chaves LD, Krueth SB, Reed KM (2009) Defining the turkey MHC: sequence and genes of the B locus. J Immunol 183:6530–6537

    Article  CAS  PubMed  Google Scholar 

  • Chaves LD, Krueth SB, Bauer MM, Reed KM (2011) Sequence of a turkey BAC clone identifies MHC class III orthologs and supports ancient origins of immunological gene clusters. Cytogenet Genome Res 132:55–63

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen K, Yuan S, Peng X, Fang J, Wang F, Cui H, Chen Z, Yuan J, Geng Y (2013a) Effects of aflatoxin B1 on oxidative stress markers and apoptosis in spleens in broilers. Toxicol Ind Health

  • Chen K, Yuan S, Chen J, Peng X, Wang F, Cui H, Fang J (2013b) Effects of sodium selenite on the decreased percentage of T cell subsets, contents of serum IL-2 and IFN-γ induced by aflatoxin B1 in broilers. Res Vet Sci 95:143–145

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Peng X, Rang J, Cui H, Zuo Z, Deng J, Chen Z, Geng Y, Lai W, Tang L, Yang Q (2014) Effects of dietary selenium on histopathological changes and T cells of spleen in broilers exposed to aflatoxin B1. Int J Environ Res Public Health 11:904–1913

    Google Scholar 

  • Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ, Jang IK, Gutkind JS, Shevach E, Gu H (2000) Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403:216–220

    Article  CAS  PubMed  Google Scholar 

  • Chiang SC, Veldhuizen EJ, Barnes FA, Craven CJ, Haagsman HP, Bingle CD (2011) Identification and characterisation of the BPI/LBP/PLUNC-like gene repertoire in chickens reveals the absence of a LBP gene. Dev Comp Immunol 35:285–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Corrier DE (1991) Mycotoxicosis: mechanisms of immunosuppression. Vet Immunol Immunopathol 30:73–87

    Article  CAS  PubMed  Google Scholar 

  • Devadas S, Das J, Liu C, Zhang L, Roberts AI, Pan Z, Moore PA, Das G, Shi Y (2006) Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity 25:237–247

    Article  CAS  PubMed  Google Scholar 

  • Dugyala RR, Sharma RP (1996) The effect of aflatoxin B1 on cytokine mRNA and corresponding protein levels in peritoneal macrophages and splenic lymphocytes. Int J Immunopharmacol 18:599–608

    Article  CAS  PubMed  Google Scholar 

  • El-Nezami H, Mykkanen H, Kankaanpaa P, Salminen S, Ahokas J (2000) Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. J Food Prot 63:549–552

    CAS  PubMed  Google Scholar 

  • Evans EW, Beach GG, Wunderlich J, Harmon BG (1994) Isolation of antimicrobial peptides from avian heterophils. J Leukoc Biol 56:661–665

    CAS  PubMed  Google Scholar 

  • Fukui Y, Sasaki E, Fuke N, Nakai Y, Ishijima T, Abe K, Yajima N (2013) Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis. Br J Nutr 110:1617–1629

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Sasaki E, Fuke N, Nakai Y, Ishijima T, Abe K, Yajima N (2014) Sequential gene expression profiling in the mouse spleen during 14 d feeding with Lactobacillus brevis KB290. Br J Nutr 28:1–10

    Google Scholar 

  • Ghosh RC, Chauhan HV, Jha GJ (1991) Suppression of cell-mediated immunity by purified aflatoxin B1 in broiler chicks. Vet Immunol Immunopathol 28:165–172

    Article  CAS  PubMed  Google Scholar 

  • Giambrone JJ, Diener UL, Davis ND, Panangala VS, Hoerr FJ (1985) Effects of aflatoxin on young turkeys and broiler chickens. Poult Sci 64:1678–1684

    Article  CAS  PubMed  Google Scholar 

  • Gratz S, Mykkanen H, El-Nezami H (2005) Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. J Food Prot 68:2470–2474

    CAS  PubMed  Google Scholar 

  • Guengerich FP, Johnson WW, Ueng YF, Yamazaki H, Shimada T (1996) Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Perspect 104:557–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han SH, Jeon YJ, Yea SS, Yang KH (1999) Suppression of the interleukin-2 gene expression by aflatoxin B1 is mediated through the down-regulation of the NF-AT and AP-1 transcription factors. Toxicol Lett 108:1–10

    Article  CAS  PubMed  Google Scholar 

  • He Y, Fang J, Peng X, Cui H, Zuo Z, Deng J, Chen Z, Lai W, Shu G, Tang L (2014) Effects of sodium selenite on aflatoxin B1-induced decrease of ileac T cell and the mRNA contents of IL-2, IL-6, and TNF-α in broilers. Biol Trace Elem Res 159:167–173

    Article  CAS  PubMed  Google Scholar 

  • Hegazy SM, Adachi Y (2000) Comparison of the effects of dietary selenium, zinc, and selenium and zinc supplementation on growth and immune response between chick groups that were inoculated with Salmonella and aflatoxin or Salmonella. Poult Sci 79:331–335

    Article  CAS  PubMed  Google Scholar 

  • Hinton DM, Myers MJ, Raybourne RA, Francke-Carroll S, Sotomayor RE, Shaddock J, Warbritton A, Chou MW (2003) Immunotoxicity of aflatoxin B1 in rats: effects on lymphocytes and the inflammatory response in a chronic intermittent dosing study. Toxicol Sci 73:362–377

    Article  CAS  PubMed  Google Scholar 

  • Kawase M, He F, Kubota A, Yoda K, Miyazawa K, Hiramatsu M (2011) Heat-killed Lactobacillus gasseri TMC0356 protects mice against influenza virus infection by stimulating gut and respiratory immune responses. FEMS Immunol Med Microbiol 64:280–288

    Article  PubMed  Google Scholar 

  • Kolset SO, Tveit H (2008) Serglycin—structure and biology. Cell Mol Life Sci 65:1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Lin JX, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38:13–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lillehoj HS, Min W, Choi KD, Babu US, Burnside J, Miyamoto T, Rosenthal BM, Lillehoj EP (2001) Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2. Vet Immunol Immunopathol 82:229–244

    Article  CAS  PubMed  Google Scholar 

  • Loeser S, Penninger JM (2007) Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin Immunol 19:206–214

    Article  CAS  PubMed  Google Scholar 

  • Luo J, King S, Adams MC (2010) Effect of probiotic Propionibacterium jensenii 702 supplementation on layer chicken performance. Benefic Microbes 1:53–60

    Article  CAS  Google Scholar 

  • MacPherson C, Audy J, Mathieu O, Tompkins TA (2014) Multistrain probiotic modulation of intestinal epithelial cells’ immune response to a double-stranded RNA ligand, poly(I·C). Appl Environ Microbiol 80:1692–1700

    Article  PubMed Central  PubMed  Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

    Article  CAS  PubMed  Google Scholar 

  • Miettinen M, Lehtonen A, Julkunen I, Matikainen S (2000) Lactobacilli and streptococci activate NF-kB and STAT signaling pathways in human macrophages. J Immunol 164:3733–3740

    Article  CAS  PubMed  Google Scholar 

  • Monson MS, Settlage RE, McMahon KW, Mendoza KM, Rawal S, El-Nemazi HS, Coulombe RA, Reed KM (2014) Response of the hepatic transcriptome to aflatoxin B1 in domestic turkey (Meleagris gallopavo). PLoS One 9:e100930

    Article  PubMed Central  PubMed  Google Scholar 

  • Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 86:309–317

    Article  CAS  PubMed  Google Scholar 

  • Mutai H, Mann S, Heller S (2005) Identification of chicken transmembrane channel-like (TMC) genes: expression analysis in the cochlea. Neuroscience 132:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Graf T (1991) Goose-type lysozyme gene of the chicken: sequence, genomic organization and expression reveals major differences to chicken-type lysozyme gene. Biochim Biophys Acta 1090:273–276

    Article  CAS  PubMed  Google Scholar 

  • Neldon-Ortiz DL, Qureshi MA (1991) Direct and microsomal activated aflatoxin B1 exposure and its effects on turkey peritoneal macrophage functions in vitro. Toxicol Appl Pharmacol 109:432–442

    Article  CAS  PubMed  Google Scholar 

  • Neldon-Ortiz DL, Qureshi MA (1992) The effects of direct and microsomal activated aflatoxin B1 on chicken peritoneal macrophages in vitro. Vet Immunol Immunopathol 31:61–76

    Article  CAS  PubMed  Google Scholar 

  • Nitto T, Dyer KD, Czapiga M, Rosenberg HF (2006) Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus. J Biol Chem 281:25622–25634

    Article  CAS  PubMed  Google Scholar 

  • Ortatatli M, Oğuz H (2001) Ameliorative effects of dietary clinoptilolite on pathological changes in broiler chickens during aflatoxicosis. Res Vet Sci 71:59–66

    Article  CAS  PubMed  Google Scholar 

  • Ortatatli M, Oğuz H, Hatipoğlu F, Karaman M (2005) Evaluation of pathological changes in broilers during chronic aflatoxin (50 and 100 ppb) and clinoptilolite exposure. Res Vet Sci 78:61–68

    Article  CAS  PubMed  Google Scholar 

  • Pandey I, Chauhan SS (2007) Studies on production performance and toxin residues in tissues and eggs of layer chickens fed on diets with various concentrations of aflatoxin AFB1. Br Poult Sci 48:713–723

    Article  CAS  PubMed  Google Scholar 

  • Paolino M, Thien CB, Gruber T, Hinterleitner R, Baier G, Langdon WY, Penninger JM (2011) Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J Immunol 186:2138–2147

    Article  CAS  PubMed  Google Scholar 

  • Pier AC, Heddleston KL (1970) The effect of aflatoxin on immunity in turkeys. I. Impairment of actively acquired resistance to bacterial challenge. Avian Dis 14:797–809

    Article  CAS  PubMed  Google Scholar 

  • Pier AC, Heddleston KL, Boney WA, Lukert PK (1971) The effect of aflatoxin on immunity. Proc XIX Cong Mundial Med Vet Zootech 1:216–219

    Google Scholar 

  • Qiao G, Lei M, Li Z, Sun Y, Minto A, Fu YX, Ying H, Quigg RJ, Zhang J (2007) Negative regulation of CD40-mediated B cell responses by E3 ubiquitin ligase Casitas-B-lineage lymphoma protein-B. J Immunol 179:4473–4479

    Article  CAS  PubMed  Google Scholar 

  • Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, Favre M (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32:579–581

    Article  CAS  PubMed  Google Scholar 

  • Rauf A, Khatri M, Murgia MV, Saif YM (2012) Fas/FasL and perforin-granzyme pathways mediated T cell cytotoxic responses in infectious bursal disease virus infected chickens. Results Immunol 2:112–119

    Article  PubMed Central  PubMed  Google Scholar 

  • Rawal S, Kim JE, Coulombe R Jr (2010) Aflatoxin B1 in poultry: toxicology, metabolism and prevention. Res Vet Sci 89:325–331

    Article  CAS  PubMed  Google Scholar 

  • Rawal S, Bauer MM, Mendoza KM, El-Nezami H, Hall JR, Kim JE, Stevens JR, Reed KM, Coulombe RA (2014) Aflatoxicosis chemoprevention by probiotic Lactobacillius and lack of effect on the major histocompatibility complex. Res Vet Sci 97:274–281

    Article  CAS  PubMed  Google Scholar 

  • Reed KM, Bauer MM, Monson MS, Benoit B, Chaves LD, O’Hare TH, Delany ME (2011) Defining the turkey MHC: identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 63:753–771

    Article  CAS  PubMed  Google Scholar 

  • Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK (1998) Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8:615–623

    Article  CAS  PubMed  Google Scholar 

  • Rossi D, Sanchez-García J, McCormack WT, Bazan JF, Zlotnik A (1999) Identification of a chicken “C” chemokine related to lymphotactin. J Leukoc Biol 65:87–93

    CAS  PubMed  Google Scholar 

  • Salim HM, Kang HK, Akter N, Kim DW, Kim JH, Kim MJ, Na JC, Jong HB, Choi HC, Suh OS, Kim WK (2013) Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune responses, cecal microbial population, and ileal morphology of broiler chickens. Poult Sci 92:2084–2090

    Article  CAS  PubMed  Google Scholar 

  • Salomonsen J, Sørensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjødt K, Kaufman J (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A 102:8668–8673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salti SM, Hammelev EM, Grewal JL, Reddy ST, Zemple SJ, Grossman WJ, Grayson MH, Verbsky JW (2011) Granzyme B regulates antiviral CD8+ T cell responses. J Immunol 187:6301–6309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shustov A, Luzina I, Nguyen P, Papadimitriou JC, Handwerger B, Elkon KB, Via CS (2000) Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity. J Clin Invest 106:R39–R47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sohn HW, Gu H, Pierce SK (2003) Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J Exp Med 197:1511–1524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solis-Pereyra B, Aattouri N, Lemonnier D (1997) Role of food in the stimulation of cytokine production. Am J Clin Nutr 66:521S–525S

    CAS  PubMed  Google Scholar 

  • Spaner D, Raju K, Radvanyi L, Lin Y, Miller RG (1998) A role for perforin in activation-induced cell death. J Immunol 160:2655–2664

    CAS  PubMed  Google Scholar 

  • Stewart RG, Skeeles JK, Wyatt RD, Brown J, Page RK, Russell ID, Lukert PD (1985) The effect of aflatoxin on complement activity in broiler chickens. Poult Sci 64:616–619

    Article  CAS  PubMed  Google Scholar 

  • Tag-El-Din-Hassan HT, Sasaki N, Moritoh K, Torigoe D, Maeda A, Agui T (2012) The chicken 2′–5′ oligoadenylate synthetase A inhibits the replication of West Nile virus. Jpn J Vet Res 60:95–103

    PubMed  Google Scholar 

  • Thaxton JP, Tung HT, Hamilton PB (1974) Immunosuppression in chickens by aflatoxin. Poult Sci 53:721–725

    Article  CAS  PubMed  Google Scholar 

  • Trapecar M, Goropevsek A, Gorenjak M, Gradisnik L, Slak Rupnik M (2014) A co-culture model of the developing small intestine offers new insight in the early immunomodulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and KF-kB p65 translocation. PLoS One 9:e86297

    Article  PubMed Central  PubMed  Google Scholar 

  • Verma J, Johri TS, Swain BK, Ameena S (2004) Effect of graded levels of aflatoxin, ochratoxin and their combinations on the performance and immune response of broilers. Br Poult Sci 45:512–518

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Shu G, Peng X, Fang J, Chen K, Cui H, Chen Z, Zuo Z, Deng J, Gene Y, Lai W (2013) Protective effects of sodium selenite against aflatoxin-B1 induced oxidative stress and apoptosis in broiler spleen. Int J Environ Res Public Health 10:2834–2844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss G, Rasmussen S, Zeuthen LH, Nielsen BN, Jarmer H, Jespersen L, Frøkiaer H (2010) Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology 131:268–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witlock DR, Wyatt RD, Anderson WI (1982) Relationship between Eimeria adenoeides infection and aflatoxicosis in turkey poults. Poult Sci 61:1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Wyatt RD, Hamilton PB (1975) Interaction between aflatoxicosis and a natural infection of chickens with Salmonella. Appl Microbiol 30:870–872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wyatt RD, Ruff MD, Page RK (1975) Interaction of aflatoxin with Eimeria tenella infection and monensin in young broiler chickens. Avian Dis 19:730–740

    Article  CAS  PubMed  Google Scholar 

  • Yarru LP, Settivari RS, Antoniou E, Ledoux DR, Rottinghaus GE (2009a) Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks. Poult Sci 88:360–371

    Article  CAS  PubMed  Google Scholar 

  • Yarru LP, Settivari RS, Gowda NK, Antoniou E, Ledoux DR, Rottinghaus GE (2009b) Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult Sci 88:2620–2627

    Article  CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang ZX, Ma Y, Wang H, Arp J, Jiang J, Huang X, He KM, Garcia B, Madrenas J, Zhong R (2006) Double-negative T cells, activated by xenoantigen, lyse autologous B and T cells using a perforin/granzyme-dependent, Fas–Fas ligand-independent pathway. J Immunol 177:6920–6929

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Trageser CL, Willerford DM, Lenardo MJ (1998) T cell growth cytokines cause the superinduction of molecules mediating antigen-induced T lymphocyte death. J Immunol 160:763–769

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Moroni Feed Co. (Ephraim, UT, USA) for providing turkeys and feed and Kevin McMahon (Virginia Tech, Blacksburg, VA, USA) for assisting with data analysis. This study was funded by US Department of Agriculture—Agriculture and Food Research Initiative Grants 2005-01326, 2007-35205-17880, and 2009-35205-05302, US Department of Agriculture—National Institute of Food and Agriculture Animal Genome Program Grant 2013-01043, and the Utah and Minnesota Agricultural Experiments Stations.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent M. Reed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Relationship between mean expression and log2 FC for each pair-wise comparison. a Aflatoxin B1 (AFB) to control (CNTL). b Probiotic mixture (PB) to CNTL. c Probiotic + aflatoxin B1 (PBAFB) to CNTL. d PBAFB to AFB. e PBAFB to PB. Each plot shows log2 fold change (FC) against mean normalized read counts for predicted transcripts with non-zero expression values in both treatments in the comparison. Transcripts with significant differential expression (q-values ≤ 0.05, determined in DESeq; Anders and Huber 2010) are highlighted in red (GIF 75 kb)

High resolution image (TIFF 509 kb)

Fig. S2

Biological process Gene Ontology (GO) term associations to transcripts with significant differential expression. a Significant transcripts in the aflatoxin B1 (AFB, blue), probiotic mixture (PB, red), and probiotic + aflatoxin B1 (PBAFB, green) groups compared to the control (CNTL) group. b Significant transcripts in the PBAFB group compared to the AFB (blue) or PB (red) groups. Level 2 biological process GO terms were identified using BLAST2GO (Contesa et al. 2005). The distribution of associated GO terms was plotted as the percent of total associations (GIF 59 kb)

High resolution image (TIFF 1041 kb)

Fig. S3

Legend for IPA regulatory and functional pathways. This code is used in Fig. 5 to designate the type of interaction and type of molecule (GIF 13 kb)

High resolution image (TIFF 441 kb)

Fig. S4

Distribution of log2 FC for significant transcripts in the spleen. a Log2 fold change (FC) for significant transcripts in aflatoxin B1 (AFB), probiotic mixture (PB), or probiotic + aflatoxin B1 (PBAFB) compared to control (CNTL). b Log2 FC for significant transcripts in PBAFB compared to AFB or PB. For each pair-wise comparison, a box-plot of log2 FC is shown for predicted transcripts with significant differential expression (q-value ≤ 0.05) and non-zero normalized expression in both treatments. Significantly different means for log2 FC (p-value ≤ 0.05) in each treatment are indicated by an asterisk. Open circles represent outliers in the data (GIF 26 kb)

High resolution image (TIFF 809 kb)

Fig. S5

Volcano plots of log2 FC and significance level for each pair-wise comparison. a Aflatoxin B1 (AFB) to control (CNTL). b Probiotic mixture (PB) to CNTL. c Probiotic + aflatoxin B1 (PBAFB) to CNTL. d PBAFB to AFB. e PBAFB to PB. Each plot shows –log10 p-value against log2 fold change (FC) for predicted transcripts with non-zero expression values in the compared treatments. Transcripts with significant differential expression (q-values ≤ 0.05) are highlighted in red. Highly significant transcripts annotated by BLAST are denoted (GIF 46 kb)

High resolution image (TIFF 1096 kb)

Table S1

Summary of RNA-seq datasets for individual spleen samples (PDF 17 kb)

Table S2

Results of filtering predicted spleen transcripts for depth of coverage and LINE-1 elements (PDF 16 kb)

Table S3

Mapping filtered transcripts to the turkey genome (build UMD 2.01) (PDF 17 kb)

Table S4

Significant DE transcripts identified using DESeq and characterized by BLAST and GO (XLSX 529 kb)

Table S5

Comparative normalized expression of IL2 and GZMA in the spleen (PDF 16 kb)

Table S6

Transcripts with significant DE in both AFB/CNTL and PBAFB/AFB group comparisons (XLSX 17 kb)

Methods S1

RNA-seq and qRT-PCR (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monson, M.S., Settlage, R.E., Mendoza, K.M. et al. Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B1 and probiotics. Immunogenetics 67, 163–178 (2015). https://doi.org/10.1007/s00251-014-0825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0825-y

Keywords

Navigation