Skip to main content
Log in

Greater prairie chickens have a compact MHC-B with a single class IA locus

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) plays a central role in innate and adaptive immunity, but relatively little is known about the evolution of the number and arrangement of MHC genes in birds. Insights into the evolution of the MHC in birds can be gained by comparing the genetic architecture of the MHC between closely related species. We used a fosmid DNA library to sequence a 60.9-kb region of the MHC of the greater prairie chicken (Tympanuchus cupido), one of five species of Galliformes with a physically mapped MHC. Greater prairie chickens have the smallest core MHC yet observed in any bird species, and major changes are observed in the number and arrangement of MHC loci. In particular, the greater prairie chicken differs from other Galliformes in the deletion of an important class I antigen binding gene. Analysis of the remaining class IA gene in a population of greater prairie chickens in Wisconsin, USA revealed little evidence for selection at the region responsible for antigen binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL (2008) Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665

    Article  PubMed  CAS  Google Scholar 

  • Alcaide M, Edwards SV, Cadahia L, Negro JJ (2009) MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. Conserv Genet 10:1349–1355

    Article  CAS  Google Scholar 

  • Alcaide M, Lemus JA, Blanco G, Tella JL, Serrano D, Negro JJ, Rodriguez A, Garcia-Montijano M (2010) MHC diversity and differential exposure to pathogens in kestrels (Aves: Falconidae). Mol Ecol 19:691–705

    Article  PubMed  CAS  Google Scholar 

  • Alcaide M, Rodriguez A, Negro JJ (2011) Sampling strategies for accurate computational inferences of gametic phase across highly polymorphic major histocompatibility complex loci. BMC Res Notes 4:151

    Article  PubMed  Google Scholar 

  • Balakrishnan CN, Ekblom R, Voelker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV (2010) Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 8:29

    Google Scholar 

  • Bauer MM, Reed KM (2011) Extended sequence of the turkey MHC B-locus and sequence variation in the highly polymorphic B-G loci. Immunogenetics 63:209–221

    Article  PubMed  Google Scholar 

  • Bellinger MR, Johnson JA, Toepfer J, Dunn PO (2003) Loss of genetic variation in Greater Prairie Chickens following a population bottleneck in Wisconsin, USA. Conserv Biol 17:717–724

    Article  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bos DH, Waldman B (2006) Polymorphism, natural selection, and structural modeling of class Ia MHC in the African clawed frog (Xenopus laevis). Immunogenetics 58:433–442

    Article  PubMed  CAS  Google Scholar 

  • Chaves LD, Krueth SB, Reed KM (2009) Defining the turkey MHC: sequence and genes of the B locus. J Immunol 183:6530–6537

    Article  PubMed  CAS  Google Scholar 

  • Chaves LD, Faile GM, Krueth SB, Hendrickson JA, Reed KM (2010) Haplotype variation, recombination, and gene conversion within the turkey MHC-B locus. Immunogenetics 62:465–477

    Article  PubMed  CAS  Google Scholar 

  • Eimes JA, Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Mhc class II diversity and balancing selection in greater prairie-chickens. Genetica 138:265–271

    Article  PubMed  CAS  Google Scholar 

  • Eimes JA, Bollmer JL, Whittingham LA, Johnson JA, Van Oosterhout C, Dunn PO (2011) Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol 24:1847–1856

    Article  PubMed  CAS  Google Scholar 

  • Ekblom R, Stapley J, Ball AD, Birkhead T, Burke T, Slate J (2011) Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata). Immunogenetics 63:523–530

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Ohta Y, Greenberg AS, Salter-Cid L, Carrizosa A, Du Pasquier L, Kasahara M (1999) Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. J Immunol 163:3826–3833

    PubMed  CAS  Google Scholar 

  • Gangoso L, Alcaide M, Grande JM, Munoz J, Talbot SL, Sonsthagens SA, Sage GK, Figuerola J (2012) Colonizing the world in spite of reduced MHC variation. J Evol Biol 25:1438–1447

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F, Billault A, Pourquie O, Behar G, Chausse AM, Zoorob R, Kreibich G, Auffray C (1988) A molecular map of the chicken major histocompatibility complex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 7:2775–2785

    PubMed  CAS  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431

    Article  Google Scholar 

  • Hosomichi K, Shiina T, Suzuki S, Tanaka M, Shimizu S, Iwamoto S, Hara H, Yoshida Y, Kulski JK, Inoko H, Hanzawa K (2006) The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 7:322

    Google Scholar 

  • Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex—independent origin of nonclassical class-I genes in different groups of mammals. Mol Biol Evol 6:559–579

    PubMed  CAS  Google Scholar 

  • Jacob JP, Milne S, Beck S, Kaufman J (2000) The major and a minor class II beta-chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics 51:138–147

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M, Schlomchik M (2005) The immune system in health and disease. Garland Science Publishing, New York, NY; Abingdon, UK

    Google Scholar 

  • Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Venugopal K (1998) The importance of MHC for Rous sarcoma virus and Marek's disease virus—some Payne-ful considerations. Avian Pathol 27:S82–S87

    Article  Google Scholar 

  • Kaufman J, Volk H, Wallny HJ (1995) A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  CAS  Google Scholar 

  • Kelley J, Trowsdale J (2005) Features of MHC and NK gene clusters. Transplant Immunol 14:129–134

    Article  CAS  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Camp S, Collen T et al (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27:885–899

    Article  PubMed  CAS  Google Scholar 

  • Kriegs JO, Matzke A, Churakov G, Kuritzin A, Mayr G, Brosius J, Scmitz J (2007) Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol Biol 7:190

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Moon DA, Veniamin SM, Parks-Dely JA, Magor KE (2005) The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. J Immunol 175:6702–6712

    PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Nielsen R, Yang ZH (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed  CAS  Google Scholar 

  • Pereira SL, Baker AJ (2006) A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol Phylogenet Evol 38:499–509

    Google Scholar 

  • Promerova M, Albrecht T, Bryja J (2009) Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 61:451–461

    Article  PubMed  CAS  Google Scholar 

  • Reed KM, Bauer MM, Monson MS, Benoit B, Chaves LD, O'Hare TH, Delany ME (2011) Defining the Turkey MHC: identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 63:753–771

    Google Scholar 

  • Rogers SL, Kaufman J (2008) High allelic polymorphism, moderate sequence diversity and diversifying selection for B-NK but not B-lec, the pair of lectin-like receptor genes in the chicken MHC. Immunogenetics 60:461–475

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Inoko H, Kulski JK (2004a) An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64:631–649

    Article  CAS  Google Scholar 

  • Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004b) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763

    CAS  Google Scholar 

  • Shum BP, Avila D, Dupasquier L, Kasahara M, Flajnik MF (1993) Isolation of a classical Mhc class-I Cdna from an amphibian—evidence for only one class-I locus in the Xenopus Mhc. J Immunol 151:5376–5386

    PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Strand T, Westerdahl H, Hoeglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale J (1988) Molecular genetics of the MHC. Immunology 41:1–17

    Google Scholar 

  • Wallny HJ, Avila D, Hunt LG et al (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci USA 103:1434–1439

    Article  PubMed  CAS  Google Scholar 

  • Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class IIB loci in a population of red jungle fowl. Immunogenetics 60:233–247

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, He K, Wu SY, Wan QH (2012) Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant. PLoS One 7:e32154

    Article  PubMed  CAS  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by grants from the Research Growth Initiative, University of Wisconsin-Milwaukee Graduate School, and National Science Foundation (DEB-0948695) to POD, JLB and LAW, American Ornithologists' Union, The American Museum of Natural History, and Ruth Walker Research Award from the University of Wisconsin-Milwaukee to JAE, and USDA-CSREES NRI Grants (#2005-01326 and 2009-35205-05302) to KMR. We thank J. Toepfer and R. Bellinger for tissue collection and processing, C. Wimpee for advice and assistance in the laboratory, and R. Settlage, for assistance with bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Eimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eimes, J.A., Reed, K.M., Mendoza, K.M. et al. Greater prairie chickens have a compact MHC-B with a single class IA locus. Immunogenetics 65, 133–144 (2013). https://doi.org/10.1007/s00251-012-0664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0664-7

Keywords

Navigation