Skip to main content

Advertisement

Log in

Molecular characterization and expression of a granzyme of an ectothermic vertebrate with chymase-like activity expressed in the cytotoxic cells of Nile tilapia (Oreochromis niloticus)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

We have identified the gene coding for a novel serine protease with close similarities to mammalian granzymes from nonspecific cytotoxic cells of a teleost fish Oreochromis niloticus. The genomic organization of tilapia granzyme-1 (TLGR-1) has the signature five-exon–four-intron structure shared by all granzymes and similar hematopoietic Ser proteases. Molecular modeling studies suggested a granzyme-like structure for this protein with four disulfide linkages and two additional Cys residues. The expression of this gene is found to be restricted to cytotoxic cell populations with a low level of constitutive expression when compared to similar granzymes in other teleost species. High levels of transcriptional activation of TLGR-1 with different stimuli suggested that this gene is highly induced during immune reactions. Triplet residues around the active site Ser of TLGR, which determines the primary substrate specificity of granzymes, differ significantly from that of other granzymes. Recombinant TLGR-1 was expressed in the mature and proenzyme forms using pPICZ-alpha vector in the Pichia pastoris expression system. Recombinant TLGR-1 was used to determine the primary substrate specificity of this protease using various synthetic thiobenzyl ester substrates. In vitro enzyme kinetics assays suggested a preference for residues with bulky side chains at the P1 site, indicating a chymase-like activity for this protease. These results indicate the presence of novel granzymes in cytotoxic cells from ectothermic vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bell GI, Quinto C, Quiroga M, Valenzuela P, Craik CS, Rutter WJ (1984) Isolation and sequence of a rat chymotrypsin B gene. J Biol Chem 259:14265–14270

    PubMed  CAS  Google Scholar 

  • Bell JK, Goetz DH, Mahrus S, Harris JL, Fletterick RJ, Craik CS (2003) The oligomeric structure of human granzyme A is a determinant of its extended substrate specificity. Nat Struct Biol 10:527–534

    Article  PubMed  CAS  Google Scholar 

  • Beresford PJ, Kam CM, Powers JC, Lieberman J (1997) Recombinant human granzyme A binds to two putative HLA-associated proteins and cleaves one of them. Proc Natl Acad Sci U S A 94:9285–9290

    Article  PubMed  CAS  Google Scholar 

  • Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML, Jaju M, Lieberman J (2001) Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem 276:43285–43293

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Meyer E Jr, Powers JC (1989) Human leukocyte and porcine pancreatic elastase: x-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 28:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Carlson RL, Evans DL, Graves SS (1985) Nonspecific cytotoxic cells in fish (Ictalurus punctatus). V. Metabolic requirements of lysis. Dev Comp Immunol 9:271–280

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Hausmann M, Lehmann-Grube F, Mullbacher A, Kopf M, Lamers M, Simon MM (1995) Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J 14:4230–4239

    PubMed  CAS  Google Scholar 

  • Evans DL, Leary JH III, Jaso-Friedmann L (1998) Nonspecific cytotoxic cell receptor protein-1: a novel (predicted) type III membrane receptor on the teleost equivalent of natural killer cells recognizes conventional antigen. Cell Immunol 187:19–26

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Ahmed II, Peters G, Cooper EL (1989) Natural cytotoxicity of tilapia leukocytes. Dis Aquat Org 7:17–22

    Article  Google Scholar 

  • Fan ZS, Beresford PJ, Zhang D, Lieberman J (2002) HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol Cell Biol 22:2810–2820

    Article  PubMed  CAS  Google Scholar 

  • Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003a) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672

    Article  PubMed  CAS  Google Scholar 

  • Fan ZS, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J (2003b) Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 4:145–153

    Article  PubMed  CAS  Google Scholar 

  • Fregeau CJ, Bleackley RC (1991) Transcription of two cytotoxic cell protease genes is under the control of different regulatory elements. Nucleic Acids Res 19:5583–5590

    Article  PubMed  CAS  Google Scholar 

  • Graves SS, Evans DL, Dawe DL (1985) Antiprotozoan activity of nonspecific cytotoxic cells (NCC) from the channel catfish (Ictalurus punctatus). J Immunol 134:78–85

    PubMed  CAS  Google Scholar 

  • Greenlee AR, Brown RA, Ristow SS (1991) Nonspecific cytotoxic cells of rainbow trout (Oncorhynchus mykiss) kill YAC-1 targets by both necrotic and apoptic mechanisms. Dev Comp Immunol 15:153–164

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GM, Isaaz S (1993) Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 120:885–896

    Article  PubMed  CAS  Google Scholar 

  • Grossman WJ, Revell PA, Lu ZH, Johnson H, Bredemeyer AJ, Ley TJ (2003) The orphan granzymes of humans and mice. Curr Opin Immunol 15:544–552

    Article  PubMed  CAS  Google Scholar 

  • Haddad P, Wargnier A, Bourge JF, Sasportes M, Paul P (1993) A promoter element of the human serine esterase granzyme B gene controls specific transcription in activated T cells. Eur J Immunol 23:625–629

    Article  PubMed  CAS  Google Scholar 

  • Han J, Goldstein LA, Gastman BR, Froelich CJ, Yin XM, Rabinowich H (2004) Degradation of MCL-1 by granzyme B: implications for bim-mediated mitochondrial apoptotic events. J Biol Chem 279:22020–22029

    Article  PubMed  CAS  Google Scholar 

  • Hanson RD, Sclar GM, Kanagawa O, Ley TJ (1991) The 5'-flanking region of the human CGL-1/granzyme B gene targets expression of a reporter gene to activated T-lymphocytes in transgenic mice. J Biol Chem 266:24433–24438

    PubMed  CAS  Google Scholar 

  • Heaton MP, Lopez-Corrales NL, Smith TPL, Kappes SM, Beattie CW (1997) Directed cosmid isolation of bovine markers for physical assignment by fish. Anim Biotechnol 8:167–177

    Article  CAS  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76:977–987

    Article  PubMed  CAS  Google Scholar 

  • Hink-Schauer C, Estebanez-Perpina E, Wilharm E, Fuentes-Prior P, Klinkert W, Bode W, Jenne DE (2002) The 2.2-A crystal structure of human pro-granzyme K reveals a rigid zymogen with unusual features. J Biol Chem 277:50923–50933

    Article  PubMed  CAS  Google Scholar 

  • Hink-Schauer C, Estebanez-Perpina E, Kurschus FC, Bode W, Jenne DE (2003) Crystal structure of the apoptosis-inducing human granzyme A dimer. Nat Struct Biol 10:535–540

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Wong GW, Ghildyal N, Gurish MF, Sali A, Matsumoto R, Qiu WT, Stevens RL (1997) The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. J Biol Chem 272:31885–31893

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Friend DS, Qiu WT, Wong GW, Morales G, Hunt J, Stevens RL (1998) Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 160:1910–1919

    PubMed  CAS  Google Scholar 

  • Irwin DM, Robertson KA, MacGillivray RT (1988) Structure and evolution of the bovine prothrombin gene. J Mol Biol 200:31–45

    Article  PubMed  CAS  Google Scholar 

  • Jaso-Friedmann L, Evans DL (1999) Mechanisms of cellular cytotoxic innate resistance in tilapia (Oreochromis nilotica). Dev Comp Immunol 23:27–35

    Article  PubMed  CAS  Google Scholar 

  • Jaso-Friedmann L, Harris DT, St. John A, Koren HS, Evans DL (1990) A monoclonal antibody-purified soluble target cell antigen inhibits nonspecific cytotoxic cell activity. J Immunol 144:2413–2418

    PubMed  CAS  Google Scholar 

  • Jaso-Friedmann L, Peterson DS, Gonzalez DS, Evans DL (2002) The antigen receptor (NCCRP-1) on catfish and zebrafish nonspecific cytotoxic cells belongs to a new gene family characterized by an F-box-associated domain. J Mol Evol 54:386–395

    PubMed  CAS  Google Scholar 

  • Jaso-Friedmann L, Praveen K, Leary JH III, Evans DL (2004) The gene and promoter structure of non-specific cytotoxic cell receptor protein-1 (NCCRP-1) in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol 16:553–560

    Article  PubMed  CAS  Google Scholar 

  • Kam CM, Hudig D, Powers JC (2000) Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta 1477:307–323

    PubMed  CAS  Google Scholar 

  • Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami Y, Satake M, Ito Y, Shigesada K (1990) Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J Virol 64:4808–4819

    PubMed  CAS  Google Scholar 

  • Kelly JM, O’Connor MD, Hulett MD, Thia KY, Smyth MJ (1996) Cloning and expression of the recombinant mouse natural killer cell granzyme Met-ase-1. Immunogenetics 44:340–350

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Kummer JA, Kamp AM, Citarella F, Horrevoets AJ, Hack CE (1996) Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C. J Biol Chem 271:9281–9286

    Article  PubMed  CAS  Google Scholar 

  • Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3:361–370

    Article  PubMed  CAS  Google Scholar 

  • Lieberman J, Fan Z (2003) Nuclear war: the granzyme A-bomb. Curr Opin Immunol 15:553–559

    Article  PubMed  CAS  Google Scholar 

  • Lockhart BE, Vencill JR, Felix CM, Johnson DA (2005) Recombinant human mast-cell chymase: an improved procedure for expression in Pichia pastoris and purification of the highly active enzyme. Biotechnol Appl Biochem 41:89–95

    Article  PubMed  CAS  Google Scholar 

  • McKinney EC, Schmale MC (1994) Damselfish with neurofibromatosis exhibit cytotoxicity toward tumor targets. Dev Comp Immunol 18:305–313

    Article  PubMed  CAS  Google Scholar 

  • Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472

    Article  PubMed  CAS  Google Scholar 

  • Owen-Schaub LB, Crump WL III, Morin GI, Grimm EA (1989) Regulation of lymphocyte tumor necrosis factor receptors by IL-2. J Immunol 143:2236–2241

    PubMed  CAS  Google Scholar 

  • Pham CT, Thomas DA, Mercer JD, Ley TJ (1998) Production of fully active recombinant murine granzyme B in yeast. J Biol Chem 273:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Pilat D, Fink T, Obermaier-Skrobanek B, Zimmer M, Wekerle H, Lichter P, Jenne DE (1994) The human Met-ase gene (GZMM): structure, sequence, and close physical linkage to the serine protease gene cluster on 19p13.3. Genomics 24:445–450

    Article  PubMed  CAS  Google Scholar 

  • Praveen K, Evans DL, Jaso-Friedmann L (2004) Evidence for the existence of granzyme-like serine proteases in teleost cytotoxic cells. J Mol Evol 58:449–459

    Article  PubMed  CAS  Google Scholar 

  • Przetak MM, Yoast S, Schmidt BF (1995) Cloning of cDNA for human granzyme 3. FEBS Lett 364:268–271

    Article  PubMed  CAS  Google Scholar 

  • Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884

    Article  PubMed  CAS  Google Scholar 

  • Revell PA, Grossman WJ, Thomas DA, Cao X, Behl R, Ratner JA, Lu ZH, Ley TJ (2005) Granzyme B and the downstream granzymes C and/or F are important for cytotoxic lymphocyte functions. J Immunol 174:2124–2131

    PubMed  CAS  Google Scholar 

  • Robinet E, Branellec D, Termijtelen AM, Blay JY, Gay F, Chouaib S (1990) Evidence for tumor necrosis factor-alpha involvement in the optimal induction of class I allospecific cytotoxic T cells. J Immunol 144:4555–4561

    PubMed  CAS  Google Scholar 

  • Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370

    Article  PubMed  CAS  Google Scholar 

  • Sattar R, Ali SA, Abbasi A (2003) Bioinformatics of granzymes: sequence comparison and structural studies on granzyme family by homology modeling. Biochem Biophys Res Commun 308:726–735

    Article  PubMed  CAS  Google Scholar 

  • Sayers TJ, Lloyd AR, McVicar DW, O’Connor MD, Kelly JM, Carter CR, Wiltrout TA, Wiltrout RH, Smyth MJ (1996) Cloning and expression of a second human natural killer cell granule tryptase, HNK-Tryp-2/granzyme 3. J Leukoc Biol 59:763–768

    PubMed  CAS  Google Scholar 

  • Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Hulett MD, Thia KY, Young HA, Sayers TJ, Carter CR, Trapani JA (1995a) Cloning and characterization of a novel NK cell-specific serine protease gene and its functional 5'-flanking sequences. Immunogenetics 42:101–111

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, O’Connor MD, Kelly JM, Ganesvaran P, Thia KY, Trapani JA (1995b) Expression of recombinant human Met-ase-1: a NK cell-specific granzyme. Biochem Biophys Res Commun 217:675–683

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Bird CH, Buzza MS, McKee KE, Whisstock JC, Bird PI (1999) Expression and purification of recombinant human granzyme B from Pichia pastoris. Biochem Biophys Res Commun 261:251–255

    Article  PubMed  CAS  Google Scholar 

  • Suzumura E, Kurata O, Okamoto N, Ikeda Y (1994) Characteristics of natural killer-like cells in carp. Fish Pathol 29:199–203

    Google Scholar 

  • Taylor SL, Jaso-Friedmann L, Allison AB, Eldar A, Evans DL (2001) Streptococcus iniae inhibition of apoptosis of nonspecific cytotoxic cells: a mechanism of activation of innate immunity in teleosts. Dis Aquat Org 46:15–21

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA (2001) Granzymes: a family of lymphocyte granule serine proteases. Genome Biol 2:3014.1–3014.7

    Article  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Sutton VR (2003) Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    Article  Google Scholar 

  • Wang SW, Speck NA (1992) Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 12:89–102

    PubMed  CAS  Google Scholar 

  • Wilharm E, Parry MA, Friebel R, Tschesche H, Matschiner G, Sommerhoff CP, Jenne DE (1999a) Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J Biol Chem 274:27331–27337

    Article  PubMed  CAS  Google Scholar 

  • Wilharm E, Tschopp J, Jenne DE (1999b) Biological activities of granzyme K are conserved in the mouse and account for residual Z-Lys-SBzl activity in granzyme A-deficient mice. FEBS Lett 459:139–142

    Article  PubMed  CAS  Google Scholar 

  • Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28:316–319

    Article  PubMed  CAS  Google Scholar 

  • Wouters MA, Liu K, Riek P, Husain A (2003) A despecialization step underlying evolution of a family of serine proteases. Mol Cell 12:343–354

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Kam CM, Huang C, Powers JC, Mandle RJ, Stevens RL, Lieberman J (1998) Expression and purification of enzymatically active recombinant granzyme B in a baculovirus system. Biochem Biophys Res Commun 243:384–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Dorothy Hudig, Dieter Jenne, Jan Potempa, and James Powers for generously providing reagents and valuable suggestions.

This work was supported by BARD # US-3159-99C and Veterinary Medical Experimental Station Grants at the College of Veterinary Medicine, University of Georgia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Jaso-Friedmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen, K., Leary, J.H., Evans, D.L. et al. Molecular characterization and expression of a granzyme of an ectothermic vertebrate with chymase-like activity expressed in the cytotoxic cells of Nile tilapia (Oreochromis niloticus) . Immunogenetics 58, 41–55 (2006). https://doi.org/10.1007/s00251-005-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0063-4

Keywords

Navigation