Skip to main content
Log in

The effect of ligand affinity on integrins’ lateral diffusion in cultured cells

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The role of ligand affinity in altering αPS2CβPS integrins’ lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22 % and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins’ increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75 % slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99 % for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SPT:

Single particle tracking

QDs:

Quantum dots

FRAP:

Fluorescence recovery after photobleaching

MSD:

Mean square displacement

LFA-1:

Lymphocyte function-associated antigen 1

References

  • Anderson CM, Georgiou GN, Morrison IE, Stevenson GV, Cherry RJ (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci 101(Pt 2):415–425

    Google Scholar 

  • Bakker GJ, Eich C, Torreno-Pina JA, Diez-Ahedo R, Perez-Samper G, van Zanten TS, Figdor CG, Cambi A, Garcia-Parajo MF (2012) Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion. Proc Natl Acad Sci USA 109(13):4869–4874

    Article  PubMed  CAS  Google Scholar 

  • Bunch TA, Brower DL (1992) Drosophila PS2 integrin mediates RGD-dependent cell-matrix interactions. Development 116(1):239–247

    PubMed  CAS  Google Scholar 

  • Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16(3):1043–1061

    Article  PubMed  CAS  Google Scholar 

  • Bunch TA, Miller SW, Brower DL (2004) Analysis of the Drosophila betaPS subunit indicates that regulation of integrin activity is a primal function of the C8–C9 loop. Exp Cell Res 294(1):118–129. doi:10.1016/j.yexcr.2003.11.002

    Article  PubMed  CAS  Google Scholar 

  • Bunch TA, Helsten TL, Kendall TL, Shirahatti N, Mahadevan D, Shattil SJ, Brower DL (2006) Amino acid changes in Drosophila alphaPS2betaPS integrins that affect ligand affinity. J Biol Chem 281(8):5050–5057

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Lagerholm BC, Yang B, Jacobson K (2006) Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39(2):147–153

    Article  PubMed  Google Scholar 

  • Chen H, Titushkin I, Stroscio M, Cho M (2007) Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys J 92(4):1399–1408

    Article  PubMed  CAS  Google Scholar 

  • Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445. doi:10.1126/science.1088525

    Article  PubMed  CAS  Google Scholar 

  • Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconj Chem 17(4):920–927. doi:10.1021/bc060044i

    Article  CAS  Google Scholar 

  • Dibya D, Sander S, Smith EA (2009) Identifying cytoplasmic proteins that affect receptor clustering using fluorescence resonance energy transfer and RNA interference. Anal Bioanal Chem 395(7):2303–2311. doi:10.1007/s00216-009-3146-5

    Article  PubMed  CAS  Google Scholar 

  • Dibya D, Arora N, Smith EA (2010) Noninvasive measurements of integrin microclustering under altered membrane cholesterol levels. Biophys J 99(3):853–861

    Article  PubMed  CAS  Google Scholar 

  • Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70(6):2767–2773

    Article  PubMed  CAS  Google Scholar 

  • Fogerty FJ, Fessler LI, Bunch TA, Yaron Y, Parker CG, Nelson RE, Brower DL, Gullberg D, Fessler JH (1994) Tiggrin, a novel Drosophila extracellular matrix protein that functions as a ligand for Drosophila alpha PS2 beta PS integrins. Development 120(7):1747–1758

    PubMed  CAS  Google Scholar 

  • Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Bahra SS, Mackie AR, Wolfe CA, O’Shea P, Ladha S, Fernandez N, Cherry RJ (2002) Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe. Biophys J 82(4):1828–1834

    Article  PubMed  CAS  Google Scholar 

  • Ghosh RN, Webb WW (1994) Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J 66(5):1301–1318

    Article  PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Graner MW, Bunch TA, Baumgartner S, Kerschen A, Brower DL (1998) Splice variants of the Drosophila PS2 integrins differentially interact with RGD-containing fragments of the extracellular proteins tiggrin, ten-m, and D-laminin 2. J Biol Chem 273(29):18235–18241

    Article  PubMed  CAS  Google Scholar 

  • Hillis GS, MacLeod AM (1996) Integrins and disease. Clin Sci (Lond) 91(6):639–650

    CAS  Google Scholar 

  • Huveneers S, Truong H, Danen HJ (2007) Integrins: signaling, disease, and therapy. Int J Radiat Biol 83(11–12):743–751

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, O’Dell D, August JT (1984) Lateral diffusion of an 80,000-dalton glycoprotein in the plasma membrane of murine fibroblasts: relationships to cell structure and function. J Cell Biol 99(5):1624–1633

    Article  PubMed  CAS  Google Scholar 

  • Jannuzi AL, Bunch TA, West RF, Brower DL (2004) Identification of integrin beta subunit mutations that alter heterodimer function in situ. Mol Biol Cell 15(8):3829–3840. doi:10.1091/mbc.E04-02-0085

    Article  PubMed  CAS  Google Scholar 

  • Kevin B, Dries V, Jo D, Stefaan De S (2010) Single particle tracking. In: Nanoscopy and multidimensional optical fluorescence microscopy. Chapman and Hall/CRC, pp 5-1–5-17. doi:10.1201/9781420078893-c5

  • Kovaleski JM, Wirth MJ (1997) Peer reviewed: applications of fluorescence recovery after photobleaching. Anal Chem 69(19):600A–605A. doi:10.1021/ac971792r

    Article  CAS  Google Scholar 

  • Kucik DF, O’Toole TE, Zheleznyak A, Busettini DK, Brown EJ (2001) Activation-enhanced alpha(IIb)beta(3)-integrin-cytoskeleton interactions outside of focal contacts require the alpha-subunit. Mol Biol Cell 12(5):1509–1518

    PubMed  CAS  Google Scholar 

  • Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65(5):2021–2040

    Article  PubMed  CAS  Google Scholar 

  • Lee GM, Ishihara A, Jacobson KA (1991) Direct observation of Brownian motion of lipids in a membrane. Proc Natl Acad Sci USA 88(14):6274–6278

    Article  PubMed  CAS  Google Scholar 

  • Leitinger B, Hogg N (2002) The involvement of lipid rafts in the regulation of integrin function. J Cell Sci 115(Pt 5):963–972

    PubMed  CAS  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647. doi:10.1146/annurev.immunol.25.022106.141618

    Article  PubMed  CAS  Google Scholar 

  • Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150. doi:10.1021/ja002535y

    Article  CAS  Google Scholar 

  • Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2(9):630–638. doi:10.1038/nmat961

    Article  PubMed  CAS  Google Scholar 

  • Mirchev R, Golan DE (2001) Single-particle tracking and laser optical tweezers studies of the dynamics of individual protein molecules in membranes of intact human and mouse red cells. Blood Cells Mol Dis 27(1):143–147. doi:10.1006/bcmd.2000.0367

    Article  PubMed  CAS  Google Scholar 

  • Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature (London) 383 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), pp 802–804. doi:10.1038/383802a0

  • Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4):910–921

    Article  PubMed  CAS  Google Scholar 

  • Reddy KV, Mangale SS (2003) Integrin receptors: the dynamic modulators of endometrial function. Tissue Cell 35(4):260–273

    Article  PubMed  CAS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72(8):3111–3113

    Article  PubMed  CAS  Google Scholar 

  • Sander S, Arora N, Smith EA (2012) Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors. Anal Bioanal Chem 403(8):2327–2337. doi:10.1007/s00216-011-5603-1

    Article  PubMed  CAS  Google Scholar 

  • Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399. doi:10.1146/annurev.biophys.26.1.373

    Article  PubMed  CAS  Google Scholar 

  • Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195

    Article  PubMed  CAS  Google Scholar 

  • Slattery JP (1995) Lateral mobility of Fc[epsilon]RI on rat basophilic leukemia cells as measured by single particle tracking using a novel bright fluorescent probe. Cornell University

  • Smith EA, Bunch TA, Brower DL (2007) General in vivo assay for the study of integrin cell membrane receptor microclustering. Anal Chem 79(8):3142–3147. doi:10.1021/ac062008i

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Hogg N (1996) Regulation of leukocyte integrin function: affinity vs. avidity. J Cell Biochem 61(4):554–561. doi:10.1002/(SICI)1097-4644(19960616)61:4<554::AID-JCB8>3.0.CO;2-N

    Google Scholar 

  • Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215

    Article  PubMed  Google Scholar 

  • Takagi J, Petre BM, Walz T, Springer TA (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110(5):599–611

    Article  PubMed  CAS  Google Scholar 

  • van Kooyk Y, Figdor CG (2000) Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol 12(5):542–547

    Article  PubMed  Google Scholar 

  • Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A (2010) Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. J Nanobiotechnol 8:13

    Article  Google Scholar 

  • Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294(5541):339–345. doi:10.1126/science.1064535

    Article  PubMed  CAS  Google Scholar 

  • Zavortink M, Bunch TA, Brower DL (1993) Functional properties of alternatively spliced forms of the Drosophila PS2 integrin alpha subunit. Cell Adhes Commun 1(3):251–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under Grant CHE-0845236. The authors thank Dr. Javier Vela and Ms. Yijun Guo for providing QDs for initial experiments and Mr. Aleem Syed for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainali, D., Smith, E.A. The effect of ligand affinity on integrins’ lateral diffusion in cultured cells. Eur Biophys J 42, 281–290 (2013). https://doi.org/10.1007/s00249-012-0873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0873-x

Keywords

Navigation