Skip to main content
Log in

The transmembrane domain of Neu in a lipid bilayer: molecular dynamics simulations

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The results of full-atom molecular dynamics simulations of the transmembrane domains (TMDs) of both native, and Glu664-mutant (either protonated or unprotonated) Neu in an explicit fully hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayer are presented. For the native TMD peptide, a 10.05 ns trajectory was collected, while for the mutant TMD peptides 5.05 ns trajectories were collected for each. The peptides in all three simulations display stable predominantly α-helical hydrogen bonding throughout the trajectories. The only significant exception occurs near the C-terminal end of the native and unprotonated mutant TMDs just outside the level of the lipid headgroups, where π-helical hydrogen bonding develops, introducing a kink in the backbone structure. However, there is no indication of the formation of a π bulge within the hydrophobic region of either native or mutant peptides. Over the course of the simulation of the mutant peptide, it is found that a significant number of water molecules penetrate the hydrophobic region of the surrounding lipid molecules, effectively hydrating Glu664. If the energy cost of such water penetration is significant enough, this may be a factor in the enhanced dimerization affinity of Glu664-mutant Neu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anézo C, de Vries AH, Höltje H-D, Tieleman DP, Marrink S-J (2003) Methodological issues in lipid bilayer simulations. J Phys Chem 107:9424–9433

    Google Scholar 

  • Bargmann CI, Weinberg RA (1988) Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J 7:2043–2052

    CAS  PubMed  Google Scholar 

  • Bargmann CI, Hung MC, Weinberg RA (1986a) Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45:649–657

    CAS  PubMed  Google Scholar 

  • Bargmann CI, Hung MC, Weinberg RA (1986b) The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230

    CAS  PubMed  Google Scholar 

  • Belohorcová K, Davis JH, Woolf TB, Roux B (1997) Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J 73:3039–3055

    PubMed  Google Scholar 

  • Bernèche S, Roux B (2000) Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys J 78:2900–2917

    PubMed  Google Scholar 

  • Bernèche S, Nina M, Roux B (1998) Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J 75:1603–1618

    PubMed  Google Scholar 

  • Brandt-Rauf PW, Pincus MR, Monaco R (1995) Conformation of the transmembrane domain of the c-erbB-2 oncogene-encoded protein in its monomeric and dimeric states. J Protein Chem 14:33–40

    CAS  PubMed  Google Scholar 

  • Brennan PJ, Kumogai T, Berezov A, Murali R, Greene MI (2000) HER2/Neu: mechanisms of dimerization/oligomerization. Oncogene 19:6093–6101

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    CAS  Google Scholar 

  • Burke C, Stern DF (1998) Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface. Mol Cell Biol 18:5371–5379

    CAS  PubMed  Google Scholar 

  • Cao H, Bangalore L, Bormann BJ, Stern DF (1992a) A subdomain in the transmembrane domain is necessary for p185neu* activation. EMBO J 11:923–932

    CAS  PubMed  Google Scholar 

  • Cao H, Bangalore L, Dompe C, Bormann BJ, Stern DF (1992b) An extra cysteine proximal to the transmembrane domain induces crosslinking of p185neu and p185neu*. J Biol Chem 267:20489–20492

    CAS  PubMed  Google Scholar 

  • Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney Jr. DW, and Leahy DJ. (2003) Structure of the extracellular region of Her2 alone and in complex with the herceptin Fab. Nature 421:756–760

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE (1984) Proteins: structures and molecular properties. WH Freeman, New York

  • Darden T, York D, Pederson L (1993) Particle mesh Ewald: an n·log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.

    Article  CAS  Google Scholar 

  • Davis J H, Auger M (1999) Static and magic angle spinning NMR of membrane peptides and proteins. Prog NMR Spectrosc 35:1–84

    Article  CAS  Google Scholar 

  • De Loof H, Harvey SC, Segrest JP, Pastor RW (1991) Mean field stochastic boundary molecular dynamics simulation of a phospholipid in a membrane. Biochemistry 30:2099–2113

    PubMed  Google Scholar 

  • Dunbrack RL, Karplus M (1993) Backbone-dependent rotamer library for proteins. J Mol Biol 230:543–574

    Article  CAS  PubMed  Google Scholar 

  • Duneau J-P, Genest D, Genest M (1996) Detailed description of an α-helix→π-bulge transition detected by molecular dynamics simulations of the p185c-erbB2 V659G transmembrane domain. J Biomol Struct Dyn 13:753–769

    CAS  PubMed  Google Scholar 

  • Duneau J-P, Garnier N, Genest M (1997) Insight into signal transduction: structural alterations in transmembrane helices probed by multi- 1 ns molecular dynamics simulations. J Biomol Struct Dyn 15:555–572

    CAS  PubMed  Google Scholar 

  • Duneau J-P, Crouzy S, Garnier N, Chapron Y, Genest M (1999) Molecular dynamics simulations of the erbB-2 transmembrane domain within an explicit membrane environment: comparison with vacuum simulations. Biophys Chem 76:35–53

    Article  CAS  PubMed  Google Scholar 

  • Egberts E, Marrink SJ, Berendsen HJC (1994) Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436

    CAS  PubMed  Google Scholar 

  • Engh RA, Huber R (1991) Accurate bond and angle parameters for x-ray protein structure refinement. Acta Cryst A47:392–400

    CAS  Google Scholar 

  • Feig M, MacKerell AD Jr, Brooks CL III (2003) Force field influence on the observation of π-helical protein structures in molecular dynamics simulations. J Phys Chem B 107:2831–2836

    Article  CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Google Scholar 

  • Finean JB, Coleman R, Michell RH (1984) Membranes and their cellular functions, 3rd edn. Blackwell, Boston

  • Fleishman FJ, Schlessinger J, Ben-Tal N (2003) A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci USA 99:15937–15940

    Article  Google Scholar 

  • Forrest LR, Kukol A, Arkin IT, Tieleman DP, Sansom MSP (2000) Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J 78:55–69

    CAS  PubMed  Google Scholar 

  • Franks NP (1976) Structural analysis of hydrated egg lecithin and cholesterol bilayers I. X-ray diffraction. J Mol Biol 100:345–358

    CAS  PubMed  Google Scholar 

  • Garnier N, Genest D, Duneau J-P, Genest M (1994) Influence of a mutation in the transmembrane domain of the p185c-erbB2 oncogene-encoded protein studied by molecular dynamics simulations. J Biomol Struct Dyn 11:983–1002

    CAS  PubMed  Google Scholar 

  • Garnier N, Genest D, Duneau J-P, Genest M (1997) Molecular modeling of c-erbB2 receptor dimerization: coiled-coil structure of wild and oncogenic transmembrane domains—stabilization by interhelical hydrogen bonds in the oncogenic form. Biopolymers 42:157–168

    Article  CAS  PubMed  Google Scholar 

  • Garnier N, Crouzy S, Genest M (2003) Molecular dynamics simulations of the transmembrane domain of the oncogenic ErbB2 receptor dimer in a DMPC bilayer. J Biomol Struct Dyn 21:179–199

    CAS  PubMed  Google Scholar 

  • Gennis R B (1989) Biomembranes: molecular structure and function. Springer, Berlin Heidelberg New York

  • Goetz M, Carlotti C, Bontemps F, Dufourc EJ (2001) Evidence for an α-helix→π-bulge helicity modulation for the Neu/ErbB-2 membrane-spanning segment. A 1H NMR and circular dichroism study. Biochemistry 40:6534–6540

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DJ, Andresson T, Sparkowski JJ, Schlegel R (1992) The BPV-1 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. EMBO J 11:4851–4859

    CAS  PubMed  Google Scholar 

  • Gullick WJ, Bottomley AC, Lofts FJ, Doak DG, Mulvey D, Newman R, Crumpton JJ, Sternberg MJ, Campbell ID (1992) Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the Neu protein. EMBO J 11:43–48

    CAS  PubMed  Google Scholar 

  • Haile JM (1992) Molecular dynamics simulations: elementary methods. John Wiley, Toronto

    Google Scholar 

  • Hardy BJ, Pastor RW (1994) Conformational sampling of hydrocarbon lipid chains in an orienting potential. J Comp Chem 15:208–226

    CAS  Google Scholar 

  • Ho C, Stubbs CD (1992) Hydration at the membrane protein–lipid interface. Biophys J 63:897–902

    CAS  PubMed  Google Scholar 

  • Houliston RS, Hodges RS, Sharom FJ, Davis JH (2003) Comparison of proto-oncogenic and mutant forms of the transmembrane region of the Neu receptor in TFE. FEBS Lett 535:39–43

    Article  CAS  PubMed  Google Scholar 

  • Houliston RS, Hodges RS, Sharom FJ, Davis JH (2004) Characterization of the proto-oncogenic and mutant forms of the transmembrane region of Neu in micelles. J Biol Chem (in press.)

  • Hynes NE, Stern DF (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1198:165–184.

    CAS  PubMed  Google Scholar 

  • Jacobs RE, White SH (1989) The nature of the hydrophobic binding of small peptides at the bilayer interface. Implications for the insertion of transbilayer helices. Biochemistry 28:3421–3437

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  • Koenig BW, Strey HH, Gawrisch, K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966

    CAS  PubMed  Google Scholar 

  • Kovacs H, Mark AE, Johansson J, van Gunsteren WF (1995) The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol, and water. J Mol Biol 247:808–822

    Article  CAS  PubMed  Google Scholar 

  • Mackerell AD, Bashford D, Bellot M, Dunbrack RL, Field MJ, Fischer S, Gao J, Guo H, Joseph D, Ha S, Kuchnir L, Kuczera K, Lau FTK, Matos C, Michnick S, Nguyen DT, Ngo T, Prodhom B, Roux B, Schlenkrich B, Smith J, Stote R, Staub J, Wiorkiewicz-Kuczera J, Karplus M (1992) Self-consistent parametrization of biomolecules for molecular modelling and condensed phase simulations. Biophys J 61:A143

    Google Scholar 

  • Nelander JC, Blaurock AE (1978) Disorder in nerve myelin: phasing the higher order reflections by means of the diffuse scatter. J Mol Biol 118:497–532

    CAS  Google Scholar 

  • Nosé S (1984a) Constant temperature molecular dynamics. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Nosé S (1984b) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Google Scholar 

  • O’Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651

    CAS  PubMed  Google Scholar 

  • Pastor RW, Venable RM, Karplus M (1991) Model for the structure of the lipid bilayer. Proc Natl Acad Sci USA 88:892–896

    CAS  PubMed  Google Scholar 

  • Patra M, Karttunen M, Hyvönen MT, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    CAS  PubMed  Google Scholar 

  • Petrache HI, Tristam-Nagle S, Nagle JF (1998) Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids 95:83–94

    CAS  PubMed  Google Scholar 

  • Petrache HI, Dodd SW, Brown MF (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192

    CAS  PubMed  Google Scholar 

  • Press MF, Bernstein L, Thomas PA, Meisner F, Zhou JY, Ma Y, Hung G, Robinson RA, Harris C, El-Naggar A, Slamon D J, Phillips RN, Ross JS, Wolman SR, Flom KJ (1997) HER-2 neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol 15:2894–2904

    CAS  PubMed  Google Scholar 

  • Roux B, Woolf TB (1996) Molecular dynamics of Pf1 coat protein in a phospholipid bilayer. In: Merz Jr KM, Roux B (eds) Biological membranes: a molecular perspective from computation and experiment. Birkhauser, Boston, pp 555–587

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    CAS  Google Scholar 

  • Sajot N, Genest M (2000) Structure prediction of the dimeric Neu/ErbB-2 transmembrane domain from multi-nanosecond molecular dynamics simulations. Eur Biophys J 28:648–662

    Article  CAS  PubMed  Google Scholar 

  • Smith SO, Smith CS, Bormann BJ (1996) Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the Neu/ErbB-2 receptor. Nat Struct Biol 3:252–258

    CAS  PubMed  Google Scholar 

  • Smith SO, Smith C, Shekar S, Peersen O, Ziliox M, Aimoto S (2002) Transmembrane interactions in the activation of the Neu receptor tyrosine kinase. Biochemistry 41:9321–9332

    Article  CAS  PubMed  Google Scholar 

  • Tieleman DP, Berendsen HJC, Sansom MSP (1999) An Alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J 76:1757–1769

    CAS  PubMed  Google Scholar 

  • Sternberg MJE, Gullick WJ (1990) A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Prot Eng 3:245–248

    CAS  Google Scholar 

  • Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993) Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262:223–226

    CAS  PubMed  Google Scholar 

  • Verlet L (1967) Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  • Weiner DB, Liu J, Cohen JA, Williams WV, Greene MI (1989) A point mutation in the Neu oncogene mimics ligand induction of receptor aggregation. Nature 339:230–231

    CAS  PubMed  Google Scholar 

  • Zhou FX, Merianos HJ, Brunger AT, Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA 98:2250–2255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Bernie Nickel of the Department of Physics at the University of Guelph and Simon Bernèche and Professor Benoit Roux of the Departments of Chemistry and Physics at the Université de Montréal. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). B.M.V. was supported by a NSERC PGS A scholarship in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Ende, B.M., Sharom, F.J. & Davis, J.H. The transmembrane domain of Neu in a lipid bilayer: molecular dynamics simulations. Eur Biophys J 33, 596–610 (2004). https://doi.org/10.1007/s00249-004-0407-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0407-2

Keywords

Navigation