Skip to main content
Log in

What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its Decline a Decade Later

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Facultative, intracellular bacterial symbionts of arthropods may dramatically affect host biology and reproduction. The length of these symbiont-host associations may be thousands to millions of years, and while symbiont loss is predicted, there have been very few observations of a decline of symbiont infection rates. In a population of the sweet potato whitefly species (Bemisia tabaci MEAM1) in Arizona, USA, we documented the frequency decline of a strain of Rickettsia in the Rickettsia bellii clade from near-fixation in 2011 to 36% of whiteflies infected in 2017. In previous studies, Rickettsia had been shown to increase from 1 to 97% from 2000 to 2006 and remained at high frequency for at least five years. At that time, Rickettsia infection was associated with both fitness benefits and female bias. In the current study, we established matrilines of whiteflies from the field (2016, Rickettsia infection frequency = 58%) and studied (a) Rickettsia vertical transmission, (b) fitness and sex ratios associated with Rickettsia infection, (c) symbiont titer, and (d) bacterial communities within whiteflies. The vertical transmission rate was high, approximately 98%. Rickettsia infection in the matrilines was not associated with fitness benefits or sex ratio bias and appeared to be slightly costly, as more Rickettsia-infected individuals produced non-hatching eggs. Overall, the titer of Rickettsia in the matrilines was lower in 2016 than in the whiteflies collected in 2011, but the titer distribution appeared bimodal, with high- and low-titer lines, and constancy of the average titer within lines over three generations. We found neither association between Rickettsia titer and fitness benefits or sex ratio bias nor evidence that Rickettsia was replaced by another secondary symbiont. The change in the interaction between symbiont and host in 2016 whiteflies may explain the drop in symbiont frequency we observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc Lond B 273:603–610

    Article  Google Scholar 

  2. Henry LM, Peccoud J, Simon JC, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23:1713–1717. https://doi.org/10.1016/j.cub.2013.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie JL, Vilchez I, Mateos M (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One:5. https://doi.org/10.1371/journal.pone.0012149

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. https://doi.org/10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  6. Lukasik P, Guo H, Van Asch M, Ferrari J, Godfray HCJ (2013) Protection against a fungal pathogen conferred by the aphid facultative endosymbionts Rickettsia and Spiroplasma is expressed in multiple host genotypes and species and is not influenced by co-infection with another symbiont. J Evol Biol 26:2654–2661. https://doi.org/10.1111/jeb.12260

    Article  CAS  PubMed  Google Scholar 

  7. Kaiser W, Huguet E, Casas J, Commin C, Giron D (2010) Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc Lond B 277:2311–2319. https://doi.org/10.1098/rspb.2010.0214

    Article  CAS  Google Scholar 

  8. Wagner SM, Martinez AJ, Ruan YM, Kim KL, Lenhart PA, Dehnel AC, Oliver KM, White JA (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29:1402–1410. https://doi.org/10.1111/1365-2435.12459

    Article  Google Scholar 

  9. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256. https://doi.org/10.1126/science.1199410

    Article  CAS  PubMed  Google Scholar 

  10. O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers. Oxford University Press, New York, p 214

    Google Scholar 

  11. McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A 104:19392–19397. https://doi.org/10.1073/pnas.0708855104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SGE (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379. https://doi.org/10.1126/science.1071278

    Article  CAS  PubMed  Google Scholar 

  13. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York, p 909

    Google Scholar 

  14. Moran NA, Degnan PH (2006) Functional genomics of Buchnera and the ecology of aphid hosts. Mol Ecol 15:1251–1261. https://doi.org/10.1111/j.1365-294X.2005.02744.x

    Article  CAS  PubMed  Google Scholar 

  15. Snyder AK, Rio RVM (2015) “Wigglesworthia morsitans” folate (vitamin B-9) biosynthesis contributes to tsetse host fitness. Appl Environ Microbiol 81:5375–5386. https://doi.org/10.1128/aem.00553-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S (2014) Vitamin B-6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol 80:5844–5853. https://doi.org/10.1128/aem.01150-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  18. Bailly-Bechet M, Martins-Simoes P, Szollosi GJ, Mialdea G, Sagot MF, Charlat S (2017) How long does Wolbachia remain on board? Mol Biol Evol 34:1183–1193. https://doi.org/10.1093/molbev/msx073

    Article  CAS  PubMed  Google Scholar 

  19. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702–702

    Article  CAS  PubMed  Google Scholar 

  20. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763

    Article  CAS  Google Scholar 

  21. Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith AH, Lukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, Doll S, Tuttle R, Disciullo RA, Messina A, Oliver KM, Russell JA (2015) Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol 24:1135–1149. https://doi.org/10.1111/mec.13095

    Article  PubMed  Google Scholar 

  23. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc Lond B 275:293–299

    Article  Google Scholar 

  24. Jaenike J (2012) Population genetics of beneficial heritable symbionts. TREE 27:226–232. https://doi.org/10.1016/j.tree.2011.10.005

    Article  PubMed  Google Scholar 

  25. Breeuwer JAJ, Werren JH (1993) Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A 99:2918–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duron O, Bernard C, Unal S, Berthomieu A, Berticat C, Weill M (2006) Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens. Mol Ecol 15:3061–3071

    Article  CAS  PubMed  Google Scholar 

  28. Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2:384–393. https://doi.org/10.1371/journal.ppat.0020043

    Article  Google Scholar 

  29. Jaenike J (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118:353–362. https://doi.org/10.1111/j.1600-0706.2008.17110.x

    Article  Google Scholar 

  30. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  31. Zhu DT, Xia WQ, Rao Q, Liu SS, Ghanim M, Wang XW (2016) Sequencing and comparison of the Rickettsia genomes from the whitefly Bemisia tabaci Middle East Asia Minor I. Insect Sci 23:531–542. https://doi.org/10.1111/1744-7917.12367

    Article  CAS  PubMed  Google Scholar 

  32. Cass BN, Yallouz R, Bondy EC, Mozes-Daube N, Horowitz AR, Kelly SE, Zchori-Fein E, Hunter MS (2015) Dynamics of the endosymbiont Rickettsia in an insect pest. Microb Ecol 70:287–297. https://doi.org/10.1007/s00248-015-0565-z

    Article  CAS  PubMed  Google Scholar 

  33. Hendry TA, Hunter MS, Baltrus DA (2014) The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environ Microbiol 80:7161–7168. https://doi.org/10.1128/Aem.02447-14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cass BN, Himler AG, Bondy EC, Bergen JE, Fung SK, Kelly SE, Hunter MS (2016) Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia 180:169–179. https://doi.org/10.1007/s00442-015-3436-x

    Article  PubMed  Google Scholar 

  35. Hunter MS, Asiimwe P, Himler AG, Kelly SE (2017) Host nuclear genotype influences phenotype of a conditional mutualist symbiont. J Evol Biol 30:141–149. https://doi.org/10.1111/jeb.12993

    Article  CAS  PubMed  Google Scholar 

  36. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR (2013) Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9. https://doi.org/10.1371/journal.ppat.1003607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riegler M, Sidhu M, Miller WJ, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433. https://doi.org/10.1016/j.cub.2005.06.069

    Article  CAS  PubMed  Google Scholar 

  38. Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Prot 20:853–869. https://doi.org/10.1016/s0261-2194(01)00116-8

    Article  Google Scholar 

  39. Thao ML, Baumann P (2004) Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 70:3401–3406. https://doi.org/10.1128/aem.70.6.3401-3406.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, Latorre A, Klein CC, Vavre F, Sagot MF, Liu SS, Mouton L, Wang XW (2015) Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 16. https://doi.org/10.1186/s12864-015-1379-6

  41. Rollat-Farnier PA, Santos-Garcia D, Rao Q, Sagot MF, Silva FJ, Henri H, Zchori-Fein E, Latorre A, Moya A, Barbe V, Liu SS, Wang XW, Vavre F, Mouton L (2015) Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Genome Biol Evol 7:839–855. https://doi.org/10.1093/gbe/evv030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102:483–489. https://doi.org/10.1038/hdy.2009.5

    Article  CAS  PubMed  Google Scholar 

  43. Chiel E, Zchori-Fein E, Inbar M, Gottlieb Y, Adachi-Hagimori T, Kelly SE, Asplen MK, Hunter MS (2009) Almost there: transmission routes of bacterial symbionts between trophic levels. PLoS One 4:e4767

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Barro PJ, Scott KD, Graham GC, Lange CL, Schutze MK (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci. Mol Ecol Notes 3:40–43

    Article  Google Scholar 

  45. Caspi-Fluger A, Inbar M, Mozes-Daube N, Mouton L, Hunter MS, Zchori-Fein E (2011) Rickettsia ‘in’ and ‘out’: two different localization patterns of a bacterial symbiont in the same insect species. PLoS One 6:e21096. https://doi.org/10.1371/journal.pone.0021096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta delta C) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  47. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl Acids Res 41. https://doi.org/10.1093/nar/gks808

    Article  PubMed  PubMed Central  Google Scholar 

  48. Illumina (2013) 16S Metagenomic sequencing library preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf. Accessed 1 Mar 2019

  49. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10.14806/ej.17.1.200

    Google Scholar 

  50. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  53. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Turelli M, Hoffman AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    Article  CAS  PubMed  Google Scholar 

  55. Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B, Antelope CX, Kim KJ, May MR, Abrieux A, Wilson DA, Bronski MJ, Moore BR, Gao JJ, Eisen MB, Chiu JC, Conner WR, Hoffmann AA (2018) Rapid global spread of wRi-like Wolbachia across multiple Drosophila. Curr Biol 28:963. https://doi.org/10.1016/j.cub.2018.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513

    Article  PubMed  Google Scholar 

  57. Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165:2029–2038

    PubMed  PubMed Central  Google Scholar 

  58. Sandström JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228

    Article  PubMed  Google Scholar 

  59. Hoffmann AA, Hercus M, Dagher H (1998) Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148:221–231

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bordenstein SR, Bordenstein SR (2011) Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS One 6:e29106. https://doi.org/10.1371/journal.pone.0029106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stevens L, Wicklow DT (1992) Multispecies interactions affect cytoplasmic incompatibility in Tribolium flour beetles. Am Nat 140:642–653

    Article  CAS  PubMed  Google Scholar 

  62. Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc Lond B 273:1273–1280

    Article  Google Scholar 

  63. Zhao DX, Hoffmann AA, Zhang ZC, Niu HT, Guo HF (2018) Interactions between facultative symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera: Aleyrodoidea): cooperation or conflict? J Econ Entomol 111:2660–2666. https://doi.org/10.1093/jee/toy261

    Article  PubMed  Google Scholar 

  64. Weeks AR, Reynolds T, Hoffmann AA (2002) Wolbachia dynamics and host effects: what has (and has not) been demonstrated? TREE 17:257–262

    Google Scholar 

  65. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269. https://doi.org/10.1038/40843

    Article  CAS  PubMed  Google Scholar 

  66. Haselkorn TS, Jaenike J (2015) Macroevolutionary persistence of heritable endosymbionts: acquisition, retention and expression of adaptive phenotypes in Spiroplasma. Mol Ecol 24:3752–3765. https://doi.org/10.1111/mec.13261

    Article  PubMed  Google Scholar 

  67. Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B 272:1525–1534

    Article  CAS  Google Scholar 

  68. Gebiola M, Kelly SE, Hammerstein P, Giorgini M, Hunter MS (2016) “Darwin’s corollary” and cytoplasmic incompatibility induced by Cardinium may contribute to speciation in Encarsia wasps (Hymenoptera: Aphelinidae). Evolution 70:2447–2458. https://doi.org/10.1111/evo.13037

    Article  PubMed  Google Scholar 

  69. Chu D, Gao CS, De Barro P, Zhang YJ, Wan FH, Khan IA (2011) Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: comparison of secondary symbionts from biotypes B and Q in China. Bull Entomol Res 101:477–486. https://doi.org/10.1017/s0007485311000083

    Article  CAS  PubMed  Google Scholar 

  70. Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y, Ghanim M, Zchori-Fein E, Fleury F (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19:4365–4378

    Article  PubMed  Google Scholar 

  71. Fujiwara A, Maekawa K, Tsuchida T (2015) Genetic groups and endosymbiotic microbiota of the Bemisia tabaci species complex in Japanese agricultural sites. J Appl Entomol 139:55–66. https://doi.org/10.1111/jen.12171

    Article  CAS  Google Scholar 

  72. Bing XL, Ruan YM, Rao Q, Wang XW, Liu SS (2013) Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci 20:194–206. https://doi.org/10.1111/j.1744-7917.2012.01522.x

    Article  CAS  PubMed  Google Scholar 

  73. Flores HA, O’Neill SL (2018) Controlling vector-borne diseases by releasing modified mosquitoes. Nat Rev Microbiol 16:508–518. https://doi.org/10.1038/s41579-018-0025-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. https://doi.org/10.1016/j.cell.2009.11.042

    Article  PubMed  Google Scholar 

  75. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453. https://doi.org/10.1038/nature10355

    Article  CAS  PubMed  Google Scholar 

  76. van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL (2012) Impact of Wolbachia on infection with Chikungunya and Yellow Fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6:e1892. https://doi.org/10.1371/journal.pntd.0001892

    Article  PubMed  PubMed Central  Google Scholar 

  77. Carrington LB, Tran BCN, Le NTH, Luong TTH, Nguyen TT, Nguyen PT, Nguyen CVV, Nguyen HTC, Vu TT, Vo LT, Le DT, Vu NT, Nguyen GT, Luu HQ, Dang AD, Hurst TP, O’Neill SL, Tran VT, Kien DTH, Nguyen NM, Wolbers M, Wills B, Simmons CP (2018) Field-and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 115:361–366. https://doi.org/10.1073/pnas.1715788115

    Article  CAS  PubMed  Google Scholar 

  78. Ritchie SA, van den Hurk AF, Smout MJ, Staunton KM, Hoffmann AA (2018) Mission accomplished? We need a guide to the ‘post release’ world of Wolbachia for Aedes-borne disease control. Trends Parasitol 34:217–226. https://doi.org/10.1016/j.pt.2017.11.011

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Peter Ellsworth, Naomi Pier, Isadora Bordini, and John Palumbo for their help in collecting whiteflies for the field samples and to Gabriella Rivera for the help with the laboratory experiments.

Funding

This research was supported by a National Institute of Health Training grant in the University of Arizona Center for Insect Science (K12GM000708) to AAB and AMR and by National Science Foundation grants DEB-1020460 (to MSH and Anna Himler) and IOS-1256905 (to MSH and Stephan Schmitz-Esser).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha S. Hunter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bockoven, A.A., Bondy, E.C., Flores, M.J. et al. What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its Decline a Decade Later. Microb Ecol 79, 482–494 (2020). https://doi.org/10.1007/s00248-019-01417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01417-4

Keywords

Navigation