Skip to main content
Log in

Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient in Streams

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Phosphorus (P) is a key biological element with important and unique biogeochemical cycling in natural ecosystems. Anthropogenic phosphorus inputs have been shown to greatly affect natural ecosystems, and this has been shown to be especially true of freshwater systems. While the importance of microbial communities in the P cycle is widely accepted, the role, composition, and relationship to P of these communities in freshwater systems still hold many secrets. Here, we investigated combined bacterial and archaeal communities utilizing 16S ribosomal RNA (rRNA) gene sequencing and computationally predicted functional metagenomes (PFMs) in 25 streams representing a strong P gradient. We discovered that 16S rRNA community structure and PFMs demonstrate a degree of decoupling between structure and function in the system. While we found that total phosphorus (TP) was correlated to the structure and functional capability of bacterial and archaeal communities in the system, turbidity had a stronger, but largely independent, correlation. At TP levels of approximately 55 μg/L, we see sharp differences in the abundance of numerous ecologically important taxa related to vegetation, agriculture, sediment, and other ecosystem inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schlesinger WH, Bernhardt ES (2013) Front matter. In: Biogeochem, Third Ed. Academic Press, Boston, pp i–ii

  2. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  3. Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121. doi:10.1007/s10021-001-0059-3

    Article  CAS  Google Scholar 

  4. Scott T, Cotner J, LaPara T (2012) Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition. Front Microbiol 3. doi:10.3389/fmicb.2012.00042

  5. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Godwin CM, Cotner JB (2014) Carbon: phosphorus homeostasis of aquatic bacterial assemblages is mediated by shifts in assemblage composition. Aquat Microb Ecol 73:245–258

    Article  Google Scholar 

  7. Godwin CM, Whitaker EA, Cotner JB (2017) Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria. Ecology 98:820–829

  8. Tapia-Torres Y, Rodríguez-Torres MD, Elser JJ et al (2016) How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Appl Environ Microbiol 82:4652–4662. doi:10.1128/AEM.00160-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Su J-Q, Ding L-J, Xue K et al (2015) Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol 24:136–150. doi:10.1111/mec.13010

    Article  PubMed  CAS  Google Scholar 

  10. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    Article  PubMed  CAS  Google Scholar 

  11. García-Palacios P, Vandegehuchte ML, Shaw EA et al (2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Chang Biol 21:1590–1600

    Article  PubMed  Google Scholar 

  12. Logue JB, Stedmon CA, Kellerman AM et al (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10:533–545

    Article  PubMed  CAS  Google Scholar 

  13. Pagaling E, Strathdee F, Spears BM et al (2014) Community history affects the predictability of microbial ecosystem development ISME J 8:19–30. doi:10.1038/ismej.2013.150

    Article  PubMed  Google Scholar 

  14. Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359. doi:10.1126/science.1261359

    Article  PubMed  CAS  Google Scholar 

  15. Tilman D, Knops J, Wedin D et al (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  16. Xu Z, Malmer D, Langille MG et al (2014) Which is more important for classifying microbial communities: who’s there or what they can do. ISME J 8:2357–2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417

  18. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519

    Article  PubMed  Google Scholar 

  19. Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8:391–400

    Article  Google Scholar 

  20. Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Front Microbiol 6:454

  21. Zinger L, Gobet A, Pommier T (2012) Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol 21:1878–1896. doi:10.1111/j.1365-294X.2011.05362.x

    Article  PubMed  Google Scholar 

  22. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726. doi:10.1007/BF02804901

    Article  Google Scholar 

  23. Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261. doi:10.2134/jeq1998.00472425002700020004x

    Article  CAS  Google Scholar 

  24. Sharpley AN, Chapra SC, Wedepohl R et al (1994) Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ Qual 23:437–451

    Article  CAS  Google Scholar 

  25. Green WR, Haggard BE (2001) Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997–1999

  26. Haggard BE, Soerens TS (2006) Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA. Ecol Eng 28:280–287. doi:10.1016/j.ecoleng.2006.07.013

    Article  Google Scholar 

  27. Haggard BE (2010) Phosphorus concentrations, loads, and sources within the Illinois River drainage area, northwest Arkansas, 1997–2008. J Environ Qual 39:2113–2120

    Article  PubMed  CAS  Google Scholar 

  28. American Public Health Association (1998) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, D.C

  29. Biggs BJF, Kilroy C Stream periphyton monitoring manual. Prepared for the New Zealand Ministry for the Environment

  30. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinform J 7

  33. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  PubMed  CAS  Google Scholar 

  34. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Langille MG, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kanehisa M, Sato Y, Kawashima M, et al (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res gkv1070

  38. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  39. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Oksanen J, Blanchet FG, Kindt R, et al (2016) Vegan: community ecology package. R package version 2.4–1

  41. Wickham H (2006) ggplot: an implementation of the grammar of graphics. R Package Version 210

  42. Marra G, Wood SN (2011) Practical variable selection for generalized additive models. Comput Stat Data Anal 55:2372–2387

    Article  Google Scholar 

  43. Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  44. Jackson DA (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience 2:297–303

    Article  Google Scholar 

  45. Butts CT (2008) Network: a package for managing relational data in R. J Stat Softw 24:1–36

    PubMed  PubMed Central  Google Scholar 

  46. Butts CT, Hunter D, Handcock M, et al (2015) Network: Classes for Relational Data

  47. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  48. Warnes GR, Bolker B, Bonebakker L, et al (2016) gplots: Various R programming tools for plotting data. R Package Version 301 2

  49. Baker ME, King RS, Kahle D (2015) TITAN2: Threshold Indicator Taxa Analysis (Version 2.1). https://rdrr.io/cran/TITAN2/. Accessed 20 June 2016

  50. Baker ME, King RS (2010) A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol Evol 1:25–37

    Article  Google Scholar 

  51. Miki T, Yokokawa T, Matsui K (2014) Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proc R Soc B 281:20132498. doi:10.1098/rspb.2013.2498

    Article  PubMed  Google Scholar 

  52. Wood SN (2001) mgcv: GAMs and generalized ridge regression for R. R News 1:20–25

    Google Scholar 

  53. Lloyd DS, Koenings JP, Laperriere JD (1987) Effects of turbidity in fresh waters of Alaska. N Am J Fish Manag 7:18–33

    Article  Google Scholar 

  54. Hill WR, Fanta SE, Roberts BJ (2009) Quantifying phosphorus and light effects in stream algae. Limnol Oceanogr 54:368–380

    Article  CAS  Google Scholar 

  55. Chapman DV, Unesco and World Health Organization and United Nations Environment Programme (eds) (1996) Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring. E & FN Spon, London

  56. Davies-Colley RJ, Smith DG (2001) Turbidity suspended sediment, and water clarity: a review

  57. Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066. doi:10.1126/science.1071698

    Article  PubMed  CAS  Google Scholar 

  58. Read DS, Gweon HS, Bowes MJ et al (2015) Catchment-scale biogeography of riverine bacterioplankton. ISME J 9:516–526

    Article  PubMed  CAS  Google Scholar 

  59. Cardinale BJ, Hillebrand H, Harpole WS et al (2009) Separating the influence of resource “availability” from resource “imbalance” on productivity–diversity relationships. Ecol Lett 12:475–487. doi:10.1111/j.1461-0248.2009.01317.x

    Article  PubMed  Google Scholar 

  60. Chambers PA, McGoldrick DJ, Brua RB et al (2012) Development of environmental thresholds for nitrogen and phosphorus in streams. J Environ Qual 41:7–20

    Article  PubMed  CAS  Google Scholar 

  61. Taylor JM, King RS, Pease AA, Winemiller KO (2014) Nonlinear response of stream ecosystem structure to low-level phosphorus enrichment. Freshw Biol 59:969–984

    Article  CAS  Google Scholar 

  62. Singh V, Stapleton RD (2002) Biotransformations bioremediation technology for health and environmental protection. Elsevier Science Ltd., Amsterdam. http://0-www.sciencedirect.com.fama.us.es/science/publication?issn=00796352&volume=36

  63. Saralov AI, Mol’kov DV, Bannikova OM, Solomennyĭ AP, Chikin SM (2001) Intracellular accumulation of monomer precursors of polyphosphates and polyhydroxyalkanoates from Acinetobacter calcoaceticus and Escherichia coli. Mikrobiologiia 70:737–744

  64. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gartemann K-H, Kirchner O, Engemann J et al (2003) Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a gram-positive phytopathogenic bacterium. J Biotechnol 106:179–191

    Article  PubMed  CAS  Google Scholar 

  66. Allen TD, Lawson PA, Collins MD et al (2006) Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int J Syst Evol Microbiol 56:1311–1316. doi:10.1099/ijs.0.64218-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Morgan Bettcher, Stephen Cook, Stephen Elser, Katherine Hooker, Lauren Housley, and Caleb Robbins for their help in collecting field samples. We also thank Owen Lind and J. Thad Scott for assistance with internal review. We acknowledge the research support by Baylor University Office of Research and Baylor University Center for Reservoir and Aquatic Systems Research (CRASR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghoon Kang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Data Availability

Sequence data that support the findings of this study have been deposited in GenBank with the BioProject accession code PRJNA350288. The environmental data that support the findings of this study are available from the corresponding author upon reasonable request.

Electronic supplementary material

Supplementary information is available at the Microbial Ecology journal website.

.

ESM 1

(PDF 523 kb)

.

ESM 2

(PDF 88 kb)

.

ESM 3

(PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBrun, E.S., King, R.S., Back, J.A. et al. Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient in Streams. Microb Ecol 75, 64–73 (2018). https://doi.org/10.1007/s00248-017-1039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1039-2

Keywords

Navigation