Skip to main content

Advertisement

Log in

Phylogenetic and Gene Expression Analysis of Cyanobacteria and Diatoms in the Twilight Waters of the Temperate Northeast Pacific Ocean

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, to explore the microbial community structure and its functionality in the deep-sea environments, we initially performed a 16S ribosomal RNA (rRNA)-based community structure analyses for microbial communities in the sea water collected from sites of 765–790 m in depth in the Pacific Ocean. Interestingly, in the clone library we detected the presence of both photoautotrophic bacteria such as cyanobacteria and photoheterotrophic bacteria, such as Chloroflexus sp. To further explore the existence and diversity of possible light-utilizing microorganisms, we then constructed and analyzed a 23S rRNA plastid gene cloning library. The results showed that the majority of this cloning library was occupied by oxygenic photoautotrophic organisms, such as diatoms Thalassiosira spp. and cyanobacterium Synechococcus sp. In addition, the diversity of these oxygenic photoautotrophic organisms was very limited. Moreover, both reverse-transcription PCR and quantitative reverse-transcription PCR approaches had been employed to detect expression of the genes involved in protein synthesis and photosynthesis of photoautotrophic organisms, and the positive results were obtained. The possible mechanisms underlying the existence of very limited diversity of photosynthetic organisms at this depth of ocean, as well as the positive detection of rRNA and mRNA of diatom and cyanobacteria, were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Agogué H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–791

    Article  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arakawa S, Sato T, Sato R, Zhang J, Gamo T, Tsunogai U, Hirota A, Yoshida Y, Usami R, Inagaki F, Kato C (2006) Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles 10:311–319

    Article  CAS  PubMed  Google Scholar 

  4. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology evolution and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  5. Cattolico RA, Jacobs MA, Zhou Y, Chang J, Duplessis M, Lybrand T, McKay J, Ong HC, Sims E, Rocap G (2008) Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains. BMC Genomics 9:211

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Google Scholar 

  7. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  CAS  PubMed  Google Scholar 

  8. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivcan MB, Edward R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  PubMed  Google Scholar 

  9. DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep-Sea Res II 48:1983–2003

    Article  Google Scholar 

  10. Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J Bacteriol 188:3345–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  PubMed  Google Scholar 

  12. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  13. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci (USA) 105:3805–3810

    Article  CAS  Google Scholar 

  14. Gill RT, Katsoulakis E, Schmitt W, Taroncher-Oldenburg G, Misra J, Stephanopoulos G (2002) Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp, strain PCC 6803. J Bacteriol 184:3671–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  PubMed  Google Scholar 

  16. Grossart H, Gust G (2009) Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: an experimental approach. Mar Ecol Prog Ser 390:97–104

    Article  Google Scholar 

  17. Guillard RL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Canley MH (eds) Culture of Marine Invertebrate Animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  18. Herndl GJ, Agogué H, Baltar F, Reinthaler T, Sintes E, Varela MM (2008) Regulation of aquatic microbial processes: the ‘microbial loop’ of the sunlit surface waters and the dark ocean dissected. Aquat Microb Ecol 53:59–68

    Article  Google Scholar 

  19. Ikeda T, Sano F, Yamaguchi A, Matsuishi T (2007) RNA:DNA ratios of calanoid copepods from the epipelagic through abyssopelagic zones of the North Pacific Ocean. Aquat Biol 1:99–108

    Article  CAS  Google Scholar 

  20. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic waters. Environ Microbiol 11:2434–2445

    Article  CAS  PubMed  Google Scholar 

  21. Karl DM, Knauer GA, Martin JH, Ward BB (1984) Bacterial chemolithotrophy in the ocean is associated with sinking particles. Nature 309:54–56

    Article  CAS  Google Scholar 

  22. Keane TM, Naughton TJ, McInerney JO (2007) MultiPhyl: a high-throughput phylogenomics webserver using distributed computing. Nucleic Acids Res 35:W33–W37

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kendall B, Reinhard CT, Lyons TW, Kaufman AJ, Poulton SW, Anbar AD (2010) Pervasive oxygenation along late Archaean ocean margins. Nature Geosci 3:647–652

    Google Scholar 

  24. Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity distribution and divisity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin Oregon). Geomicrobiol J 20:269–294

    Article  CAS  Google Scholar 

  25. Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  CAS  PubMed  Google Scholar 

  26. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area the Japan Trench. Mar Biotechnol 1:391–400

    Article  CAS  PubMed  Google Scholar 

  28. Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci (USA) 101:11013–11018

    Article  CAS  Google Scholar 

  29. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:86–89

    Article  CAS  PubMed  Google Scholar 

  30. Lochte K, Turley CM (1988) Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature 333:67–69

    Article  Google Scholar 

  31. Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Bacterial photosynthesis genes in a virus. Nature 424:741

    Article  CAS  PubMed  Google Scholar 

  32. Martín-Cuadrado AB, López-García P, Alba JC, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodríguez-Valera F (2007) Metagenomics of the deep Mediterranean a warm bathypelagic habitat. PLoS One 2:e914.D

    Article  Google Scholar 

  33. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Millard A, Clokie MRJ, Shub DA, Mann NH (2004) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci (USA) 101:11007–11012

    Article  CAS  Google Scholar 

  35. Moreira F, Rodriguez-Valera F, Lopez-Garcia P (2006) Metagenomic analysis of mesopelagic Antarctic plankton reveals a novel deltaproteobacterial group. Microbiol 152:505–517

    Article  CAS  Google Scholar 

  36. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365

    Article  CAS  PubMed  Google Scholar 

  37. Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ Microbial 67:991–994

    Article  CAS  Google Scholar 

  38. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    Article  CAS  PubMed  Google Scholar 

  39. Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, Paulsen IT (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Natl Acad Sci (USA) 103:13555–13559

    Article  CAS  Google Scholar 

  40. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Patterson DJ, Nygaard K, Steinberg G, Turley CM (1993) Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J Mar Biol Ass UK 73:67–95

    Article  Google Scholar 

  42. Pham VD, Konstantinidis KT, Palden T, DeLong EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbial 10:2313–2330

    Article  CAS  Google Scholar 

  43. Pilea AJ, Young CM (2006) The natural diet of a hexactinellid sponge: benthic–pelagic coupling in a deep-sea microbial food web. Deep Sea Research Part I: Oceanographic Research Papers 53:1148–1156

    Article  Google Scholar 

  44. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11:1358–1375

    Article  CAS  PubMed  Google Scholar 

  45. Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T and Li WKW (eds.) Photosynthetk picoplankton. Can. Bull. Fish. Aquat. Sci., 214, pp 1–70

  46. Ryther JH (1956) Photosynthesis in the ocean as a function of light intensity. Limnol Oceanogr 1:61–70

    Article  Google Scholar 

  47. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saharek R, Latasa M, Karl DM, Bidigare RR (1999) Temporal variations in diatom abundance and downward vertical flux in the oligotrophic North Pacific gyre. Deep-sea research part I-oceanographic research papers 46:1051–1075

    Article  Google Scholar 

  50. Sherwood AR, Presting GG (2007) Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J Phycology 43:605–608

    Article  Google Scholar 

  51. Spurgeon SL, Jones RC, Ramakrishnan R (2009) High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 3:e1662

    Article  Google Scholar 

  52. Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411

    Article  CAS  PubMed  Google Scholar 

  53. Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFG, Turley CM, Patching JW, Riemann F (1988/1989) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biol Oceanogr 6:203–239

    Google Scholar 

  54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  CAS  PubMed  Google Scholar 

  56. Turley CM (1991) Protozoa associated with marine “snow” and “fluff”-session. In: Reid PC, Turley CM, Burkill (eds) NATO ASI Series Vol G25, Springer Berlin, p. 309–326

  57. Vanucci S, Dell’anno A, Pusceddu A, Fabiano M, Lampitt S, Danovaro R (2001) Microbial assemblages associated with sinking particles in the Porcupine Abyssal Plain (NE Atlantic Ocean). Prog Oceanogr 50:105–121

    Article  Google Scholar 

  58. Varela MM, van Aken HM, Herndl GJ (2008) Abundance and activity of Chloroflexi-type SAR202 bacterioplankton in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol 10:1903–1911

    Article  PubMed  Google Scholar 

  59. Vilibic I, Santic D (2008) Deep water ventilation traced by Synechococcus cyanobacteria. Ocean Dyn 58:119–125

    Article  Google Scholar 

  60. Walsh DA, Zaikova E, Howes CL, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ (2009) Metagenome of a versatile chemlithoautotroph from expanding oxygen minium zones. Science 326:578–582

    Article  CAS  PubMed  Google Scholar 

  61. Weisburg WW, Barns SM, Nickels JS, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacterial 173:697–703

    CAS  Google Scholar 

  62. Worden AZ, Chisholm SW, Binder BJ (2000) In situ hybridization of Prochlorococcus and Synechococcus (marine cyanobacteria) spp, with rRNA-targeted peptide nucleic acid probes. Appl Environ Microbiol 66:284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wood AM (1985) Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature 316:252–255

    Article  Google Scholar 

  64. Wu J, Gao W, Zhang W, Meldrum DR (2011) Optimization of whole-transcriptome amplification from low cell-density deep-sea microbial samples for metatranscriptomic analysis. J Microbiol Methods 84:88–93

    Article  CAS  PubMed  Google Scholar 

  65. Zubkov MV (2009) Photoheterotrophy in marine prokaryotes. J Plankton Res 31:933–938

    Article  CAS  Google Scholar 

  66. Zubkov MV, Burkill PH (2006) Syringe pumped high speed flow cytometry of oceanic hhytoplankton. Cytometry 69A:1010–1019

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the crew of the R/V Thompson TN221 Research Cruise with chief scientists Dr. John Delaney and Dr. Deborah Kelley of the University of Washington, and Dr. Joseph Shih-Hui Chao and Dr. Cody Youngbull from the Center for Biosignatures Discovery Automation in the Biodesign Institute at Arizona State University (ASU) for their help with the water sampling. We also thank ASU for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zhang.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Phylogenetic analysis of Archaea belonging to the uncultured marine group I Crenarchaeote found in the deep-sea water (PPT 93 kb)

Supplementary Figure 2

Phylogenetic analysis of bacteria found in the deep-sea water (PPT 88 kb)

Supplementary Figure 3

Rarefaction analysis of Archaea marine group I clones (3A) and 23 rRNA clone library (3B) (PPT 80 kb)

Supplementary Table 1

A summary of phylogeny affiliation of bacterial clones (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W., Shi, X., Wu, J. et al. Phylogenetic and Gene Expression Analysis of Cyanobacteria and Diatoms in the Twilight Waters of the Temperate Northeast Pacific Ocean. Microb Ecol 62, 765–775 (2011). https://doi.org/10.1007/s00248-011-9891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9891-y

Keywords

Navigation