Skip to main content

Advertisement

Log in

STITCH: Algorithm to Splice, Trim, Identify, Track, and Capture the Uniqueness of 16S rRNAs Sequence Pairs Using Public or In-house Database

  • Methods
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A comparison of variable regions within the 16S rRNA gene is widely used to characterize relationships between bacteria and to identify phylogenetic affiliation of unknown bacteria. In environmental studies, polymerase chain reaction amplification of 16S rRNA followed by cloning and sequencing of numerous individual clones is an extensively used molecular method for elucidating microbial diversity. The sequencing process typically utilizes a forward and reverse primer pair to produce two partial reads (~700 to 800 base pairs each) that overlap and in total cover a large region of the full 16S rRNA sequence (~1.5 k base). In a typical application, this approach rapidly generates very large numbers of 16S rRNA datasets that can overwhelm manual processing efforts leading to both delays and errors. In particular, the approach presents two computational challenges: (1) the assembly of a composite sequence from the two partial reads and (2) the subsequent appropriate identification of the organism represented by the newly sequenced clones. Herein, we describe a software package, search, trim, identify, track, and capture the uniqueness of 16S rRNAs using public and in-house database (STITCH), which offers automated sequence pair splicing and genetic identification, thus simplifying the computationally intensive analysis of large sequencing libraries. The STITCH software is freely accessible over the Internet at: http://prion.bchs.uh.edu/stitch/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Woodsmall RM, Benson DA (1993) Information resources at the national center for biotechnology information. Bull Med Libr Assoc 81:282–284

    PubMed  CAS  Google Scholar 

  2. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E (2007) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35:D5–D12

    Article  PubMed  CAS  Google Scholar 

  3. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  4. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196, Epub 2007 Oct 7118

    Article  PubMed  CAS  Google Scholar 

  5. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  PubMed  CAS  Google Scholar 

  6. Ruppitsch W, Stoger A, Indra A, Grif K, Schabereiter-Gurtner C, Hirschl A, Allerberger F (2007) Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens. J Appl Microbiol 102:852–859

    Article  PubMed  CAS  Google Scholar 

  7. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  8. Wilson KH, Blitchington RB, Greene RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28:1942–1946

    PubMed  CAS  Google Scholar 

  9. Matsuda M, Tazumi A, Kagawa S, Sekizuka T, Murayama O, Moore JE, Millar BC (2006) Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis. BMC Vet Res 2:1

    Article  PubMed  CAS  Google Scholar 

  10. Miyajima M, Matsuda M, Haga S, Kagawa S, Millar BC, Moore JE (2002) Cloning and sequencing of 16S rDNA and 16S–23S rDNA internal spacer region (ISR) from urease-positive thermophilic Campylobacter (UPTC). Lett Appl Microbiol 34:287–289

    Article  PubMed  CAS  Google Scholar 

  11. Gal S (1993) Sequencing of double-stranded PCR products. Humana Press Inc., Totowa

    Google Scholar 

  12. Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317

    Article  PubMed  Google Scholar 

  13. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  PubMed  CAS  Google Scholar 

  14. La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K (2007) Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean-room environments. Appl Environ Microbiol 73:2600–2611

    Article  PubMed  Google Scholar 

  15. Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156

    Article  PubMed  CAS  Google Scholar 

  16. de Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, Wade WG (2006) Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol 21:61–68

    Article  PubMed  Google Scholar 

  17. Miralles G, Grossi V, Acquaviva M, Duran R, Claude Bertrand J, Cuny P (2007) Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 68:1327–1334

    Article  PubMed  CAS  Google Scholar 

  18. Hassan AA, Akineden O, Kress C, Estuningsih S, Schneider E, Usleber E (2007) Characterization of the gene encoding the 16S rRNA of Enterobacter sakazakii and development of a species-specific PCR method. Int J Food Microbiol 116:214–220

    Article  PubMed  CAS  Google Scholar 

  19. Zhi XY, Tang SK, Li WJ, Xu LH, Jiang CL (2006) New genus-specific primers for the PCR identification of novel isolates of the genus Streptomonospora. FEMS Microbiol Lett 263:48–53

    Article  PubMed  CAS  Google Scholar 

  20. Bathe S, Hausner M (2006) Design and evaluation of 16S rRNA sequence based oligonucleotide probes for the detection and quantification of Comamonas testosteroni in mixed microbial communities. BMC Microbiol 6:54

    Article  PubMed  Google Scholar 

  21. Hansen BM, Hendriksen NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67:185–189

    Article  PubMed  CAS  Google Scholar 

  22. Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86:9253–9257

    Article  PubMed  CAS  Google Scholar 

  23. Eckert KA, Kunkel TA (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res 18:3739–3744

    Article  PubMed  CAS  Google Scholar 

  24. Barnes WM (1992) The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene 112:29–35

    Article  PubMed  CAS  Google Scholar 

  25. Clarke LA, Rebelo CS, Goncalves J, Boavida MG, Jordan P (2001) PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Mol Pathol 54:351–353

    Article  PubMed  CAS  Google Scholar 

  26. MacVector, Inc. (2010). Available at: http://www.macvector.com/

  27. Sequencher (2009). Available at: http://www.genecodes.com/

  28. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  29. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  30. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  Google Scholar 

  31. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  PubMed  CAS  Google Scholar 

  32. Basic Local Alignment Search Tool (BLAST) (2010). Available at: http://www.ncbi.nlm.nih.gov/blast/Blast.cgi

  33. Mori H, Maruyama F, Kurokawa K (2010) VITCOMIC: visualization tool for taxonomic compositions of microbial communities based on 16S rRNA gene sequences. BMC Bioinform 11:332

    Article  Google Scholar 

  34. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  35. Azad RK, Borodovsky M (2004) Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory. Brief Bioinform 5:118–130

    Article  PubMed  CAS  Google Scholar 

  36. Ribosomal database project (RDP) (2009). Available at: http://rdp.cme.msu.edu/hierarchy/hb_intro.jsp

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  38. Wang GC, Wang Y (1996) The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142:1107–1114

    Article  PubMed  CAS  Google Scholar 

  39. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  40. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  PubMed  CAS  Google Scholar 

  41. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and in part at the University of Houston under a subcontract from the Jet Propulsion Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag A. Vaishampayan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Vaishampayan, P.A., Venkateswaran, K. et al. STITCH: Algorithm to Splice, Trim, Identify, Track, and Capture the Uniqueness of 16S rRNAs Sequence Pairs Using Public or In-house Database. Microb Ecol 61, 669–675 (2011). https://doi.org/10.1007/s00248-010-9779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9779-2

Keywords

Navigation