Skip to main content
Log in

Use of Real-Time qPCR to Quantify Members of the Unculturable Heterotrophic Bacterial Community in a Deep Sea Marine Sponge, Vetulina sp

  • ORIGINAL ARTICLE
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this report, real-time quantitative PCR (TaqMan® qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan® qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan® assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) (1992) The Prokaryotes, 2nd edn. Springer, New York, NY

  3. Brunton FR, Dixon OA (1994) Siliceous sponge–microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios 9:370–387

    Article  Google Scholar 

  4. Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures and initial results. Appl Environ Microbiol 59:881–891

    PubMed  CAS  Google Scholar 

  5. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–296

    Article  PubMed  CAS  Google Scholar 

  6. Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  7. Delong EF (1998) Molecular phylogenetics: New perspective on the ecology, evolution and biodiversity of marine organisms. In: Cooksey KE (ed) Molecular approaches to the Study of the Ocean. Chapman & Hall, London, pp 1–28

    Google Scholar 

  8. Delong EF (2005) Microbial community genomics in the ocean. Nature Rev Microbiol 3:459–469

    Article  CAS  Google Scholar 

  9. Duckworth AR, Brück WM, Janda KE, Pitts TP, McCarthy PJ (2006) Retention efficiencies of the coral reef sponges Aplysina lacunosa, Callyspongia vaginalis and Niphates digitalis determined by Coulter counter and plate culture analysis. Marine Biol Res 2:243-248

    Article  Google Scholar 

  10. Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732

    Article  PubMed  CAS  Google Scholar 

  11. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  12. Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  13. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh P, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human colonic microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  14. Giovannoni S, Rappe M (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley Liss, New York, pp 47–84

    Google Scholar 

  15. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  PubMed  CAS  Google Scholar 

  16. Gunasekera SP, Pomponi SA, McCarthy PJ (1994) Discobahamins A and B, new peptides from the Bahamian deep water marine sponge Discodermia sp. J Nat Prod 57:79–83

    Article  PubMed  CAS  Google Scholar 

  17. Gunasekera A, Sfanos KA, McCarthy PJ, Lopez JV (2005) HBMMD: an enhanced database of the microorganisms associated with deeper water marine invertebrates. Appl Microbiol Biotechnol 66:373–376

    Article  PubMed  CAS  Google Scholar 

  18. Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    Article  PubMed  CAS  Google Scholar 

  19. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  20. Hawksworth DL, Colwell RR (1992) Biodiversity amongst microorganisms and its relevance. Biodivers Conserv 1:221–345

    Article  Google Scholar 

  21. Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    PubMed  CAS  Google Scholar 

  22. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

  23. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  24. Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn JM (2003) Microbial diversity of marine sponges. In: Müller WEG (ed) Molecular marine biology of sponges. Springer, Heidelberg, pp 60–88

    Google Scholar 

  25. Hermansson A, Lindgren PE (2001) Quantification of ammonia-oxiding bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67:972–976

    Article  PubMed  CAS  Google Scholar 

  26. Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Marine Biol 148:1221–1230

    Article  Google Scholar 

  27. Hill RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting. ASMJ Press, Washington, DC, pp 177–190

    Google Scholar 

  28. Hoffmann F, Larsen O, Rapp HT, Osinga R (2005) Oxygen dynamics in choanosomal sponge explants. Marine Biol Res 1:160–163

    Article  Google Scholar 

  29. Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J 22:1–10

    Article  Google Scholar 

  30. Hooper JNA, Van Soest RWM (ed.) (2002) Systema Porifera: a guide to the classification of sponges. Kluwer, New York

  31. Imhoff JF, Truper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microb Ecol 3:1–9

    Article  Google Scholar 

  32. Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260

    Article  PubMed  CAS  Google Scholar 

  33. Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423

    Article  PubMed  CAS  Google Scholar 

  34. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, p 115–148

    Google Scholar 

  35. Lopez JV, McCarthy PJ, Janda KE, Willoughby R, Pomponi SA (1999) Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with the sponge genus Discodermia (Porifera:Demospongiae). Proceedings of the 5th International Sponge Symposium. Memoirs of the Queensland Museum 44:329–341, Brisbane (ISSN 0079-8835)

  36. Macian MC, Arahal DR, Garay E, Pujalte MJ (2005) Marinomonas aquamarina sp. nov., isolated from oysters and seawater. Syst Appl Microbiol 28:145–150

    Article  PubMed  CAS  Google Scholar 

  37. Madri PP, Hermel M, Claus G (1971) The microbial flora of the sponge Microciona prolifera Verrill and its ecological implications. Botanica Mar 14:1–5

    Article  Google Scholar 

  38. Morris RM, Rappe MS, Urbach E, Connon SA, Giovannoni SJ (2004) Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70:2836–2842

    Article  PubMed  CAS  Google Scholar 

  39. Olson JB, Lord CC, McCarthy PJ (2000) Improved recoverability of microbial colonies from marine sponge samples. Microb Ecol 40:139–147

    PubMed  Google Scholar 

  40. Olson JB, Harmody DK, McCarthy PJ (2002) Alpha-proteobacteria cultivated from marine sponges display branching rod morphology. FEMS Microbiol Lett 211:169–173

    PubMed  CAS  Google Scholar 

  41. Olson JB, McCarthy PJ (2005) Associated bacterial communities of two deep-water sponges. Aquat Microb Ecol 39:47–55

    Article  Google Scholar 

  42. Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton <10 μm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141:95–102

    Article  Google Scholar 

  43. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50:447–462

    Article  PubMed  CAS  Google Scholar 

  44. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71(7):4121–4126

    Article  PubMed  CAS  Google Scholar 

  45. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  46. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  CAS  Google Scholar 

  47. Reed JK, Pomponi SA (1997) Biodiversity and distribution of deep and shallow water sponges in the Bahamas. Proceedings of the 8th International Coral Reef Symposium 2:1387–1392

  48. Reiswig HM (1971) In situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50

    Article  Google Scholar 

  49. Rodriguez-Valera F (2002) Approaches to prokaryotic biodiversity: a population genetics perspective. Environ Microbiol 4:628–633

    Article  PubMed  CAS  Google Scholar 

  50. Sandell KA, Peterson CL, Harmody DK, McCarthy PJ, Pomponi SA, Lopez JV (2004) Molecular systematic survey of sponge-derived marine microbes. 6th International Sponge Conference Proceedings. Boll Mus Ist Univ Genova 68:579–585

  51. Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762

    PubMed  CAS  Google Scholar 

  52. Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229

    Article  PubMed  CAS  Google Scholar 

  53. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849

    Article  PubMed  CAS  Google Scholar 

  54. Sfanos KAS, Harmody DK, McCarthy PJ, Dang P, Pomponi SA, Lopez JV (2005) A molecular systematic survey of cultured microbial associates of deep water marine invertebrates. Syst Appl Microbiol 28:242–264

    Article  PubMed  CAS  Google Scholar 

  55. Sharp KH, Eam B, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629

    Article  PubMed  CAS  Google Scholar 

  56. Sieburth JM (1979) In: sea microbes. Oxford University Press, New York, p 125

    Google Scholar 

  57. Skovhus TL, Ramsing NB, Holmstrom C, Kjelleberg S, Dahllof I (2004) Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol 70:2373–2382

    Article  PubMed  CAS  Google Scholar 

  58. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  59. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  60. Stubner S (2002) Enumeration of 16S rDNA of Desultomaculum lineage rice field soil by real-time PCR with SybrGreen TM detection. J Microbiol Methods 50:155–164

    Article  PubMed  CAS  Google Scholar 

  61. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    PubMed  CAS  Google Scholar 

  62. Swofford D (2001) PAUP* Phylogenetic analysis using parsimony (*and other methods) version 4. Sinauer, Sunderland, MA

  63. Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R, Kjelleberg S, Steinberg PD (2004) Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Appl Environ Microbiol 70:4387–4389

    Article  PubMed  CAS  Google Scholar 

  64. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  65. Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  66. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  PubMed  CAS  Google Scholar 

  67. Venter CJ, Remington K, Heidelber JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knaop AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  68. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  69. Webster NS, Bourne D (2007) Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol Ecol 59:81–94

    Article  PubMed  CAS  Google Scholar 

  70. Wilkinson CR (1978) Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol 49:177–185

    Article  Google Scholar 

  71. Wilkinson CR (1987) Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4:135–146

    Google Scholar 

  72. Yoon JH, Kang SJ, Oh TK (2005) Marinomonas dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 55:2303–2307

    Article  PubMed  CAS  Google Scholar 

  73. Zhao Y, Davis RE, Lee IM (2005) Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. Int J Syst Evol Microbiol 55:2131–2141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by NSF Grants 9974984 and DEB 0103668 to JVL and PJM. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors are also grateful to Dr. Julie Olson for helpful discussion on microbial culturing, John Reed for archiving and retrieval of taxonomic specimens, Dr. Eric Brown for helpful comments, Kris Metzger for reprint requests, and UNOLS for funding ship time on the R/V Edwin Link. This manuscript is designated HBOI #1650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassler, M., Peterson, C.L., Ledger, A. et al. Use of Real-Time qPCR to Quantify Members of the Unculturable Heterotrophic Bacterial Community in a Deep Sea Marine Sponge, Vetulina sp. Microb Ecol 55, 384–394 (2008). https://doi.org/10.1007/s00248-007-9283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9283-5

Keywords

Navigation