Skip to main content

Advertisement

Log in

Advances in pediatric body MRI

  • ALARA-CT
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

MRI offers an alternative to CT, and thus is central to an ALARA strategy. However, long exam times, limited magnet availability, and motion artifacts are barriers to expanded use of MRI. This article reviews developments in pediatric body MRI that might reduce these barriers: high field systems, acceleration, navigation and newer contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edelstein WA, Glover GH, Hardy CJ et al (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618

    Article  PubMed  CAS  Google Scholar 

  2. Gold GE, Han E, Stainsby J et al (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR 183:343–351

    PubMed  Google Scholar 

  3. Schindera ST, Merkle EM, Dale BM et al (2006) Abdominal magnetic resonance imaging at 3.0 T: what is the ultimate gain in signal-to-noise ratio? Acad Radiol 13:1236–1243

    Article  PubMed  Google Scholar 

  4. Hardy CJ, Darrow RD, Saranathan M et al (2004) Large field-of-view real-time MRI with a 32-channel system. Magn Reson Med 52:878–884

    Article  PubMed  Google Scholar 

  5. Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15:277–290

    Article  PubMed  Google Scholar 

  6. Zhu Y, Hardy CJ, Sodickson DK et al (2004) Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 52:869–877

    Article  PubMed  Google Scholar 

  7. Erberich SG, Friedlich P, Seri I et al (2003) Functional MRI in neonates using neonatal head coil and MR compatible incubator. Neuroimage 20:683–692

    Article  PubMed  Google Scholar 

  8. Bolog N, Nanz D, Weishaupt D (2006) Muskuloskeletal MR imaging at 3.0 T: current status and future perspectives. Eur Radiol 16:1298–1307

    Article  PubMed  Google Scholar 

  9. O'Regan DP, Fitzgerald J, Allsop J et al (2005) A comparison of MR cholangiopancreatography at 1.5 and 3.0 tesla. Br J Radiol 78:894–898

    Article  PubMed  Google Scholar 

  10. Chung T, Muthupillai R (2004) Application of SENSE in clinical pediatric body MR imaging. Top Magn Reson Imaging 15:187–196

    Article  PubMed  Google Scholar 

  11. Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616

    Article  PubMed  Google Scholar 

  12. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

    Article  PubMed  Google Scholar 

  13. White LM, Buckwalter KA (2002) Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 6:5–17

    Article  PubMed  Google Scholar 

  14. Busse RF, Hariharan H, Vu A et al (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037

    Article  PubMed  Google Scholar 

  15. Lebel RM, Wilman AH (2007) Intuitive design guidelines for fast spin echo imaging with variable flip angle echo trains. Magn Reson Med 57:972–975

    Article  PubMed  Google Scholar 

  16. Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49:527–535

    Article  PubMed  Google Scholar 

  17. Alsop DC (1997) The sensitivity of low flip angle RARE imaging. Magn Reson Med 37:176–184

    Article  PubMed  CAS  Google Scholar 

  18. Mugler JP, Kiefer B, Brookeman JR (2000) Three-dimensional T2-weighted imaging of the brain using very long spin-echo trains. International Society of Magnetic Resonance in Medicine 8th Meeting, Denver, CO, p 687

  19. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263

    PubMed  CAS  Google Scholar 

  20. Sachs TS, Meyer CH, Hu BS et al (1994) Real-time motion detection in spiral MRI using navigators. Magn Reson Med 32:639–645

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Rossman PJ, Grimm RC et al (1996) Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198:55–60

    PubMed  CAS  Google Scholar 

  22. Huang J, Raman SS, Vuong N et al (2005) Utility of breath-hold fast-recovery fast spin-echo T2 versus respiratory-triggered fast spin-echo T2 in clinical hepatic imaging. AJR 184:842–846

    PubMed  Google Scholar 

  23. Kim BS, Kim JH, Choi GM et al (2008) Comparison of three free-breathing T2-weighted MRI sequences in the evaluation of focal liver lesions. AJR 190:W19–W27

    Article  PubMed  Google Scholar 

  24. Klessen C, Asbach P, Kroencke TJ et al (2005) Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction. J Magn Reson Imaging 21:576–582

    Article  PubMed  Google Scholar 

  25. Lee SS, Byun JH, Hong HS et al (2007) Image quality and focal lesion detection on T2-weighted MR imaging of the liver: comparison of two high-resolution free-breathing imaging techniques with two breath-hold imaging techniques. J Magn Reson Imaging 26:323–330

    Article  PubMed  Google Scholar 

  26. Vasanawala SS, Iwadate Y, Church DG et al (2010) Navigated abdominal T1-W MRI permits free-breathing image acquisition with less motion artifact. Pediatr Radiol 40:340–344

    Article  PubMed  Google Scholar 

  27. Bluemke DA, Sahani D, Amendola M et al (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237:89–98

    Article  PubMed  Google Scholar 

  28. Jung G, Breuer J, Poll LW et al (2006) Imaging characteristics of hepatocellular carcinoma using the hepatobiliary contrast agent Gd-EOB-DTPA. Acta Radiol 47:15–23

    Article  PubMed  CAS  Google Scholar 

  29. Grist TM, Korosec FR, Peters DC et al (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    PubMed  CAS  Google Scholar 

  30. Lauffer RB, Parmelee DJ, Ouellet HS et al (1996) MS-325: a small-molecule vascular imaging agent for magnetic resonance imaging. Acad Radiol 3(Suppl 2):S356–S358

    Article  PubMed  Google Scholar 

  31. Lin W, Abendschein DR, Haacke EM (1997) Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. J Magn Reson Imaging 7:183–190

    Article  PubMed  CAS  Google Scholar 

  32. Prompona M, Cyran C, Nikolaou K et al (2009) Contrast-enhanced whole-heart MR coronary angiography at 3.0 T using the intravascular contrast agent gadofosveset. Invest Radiol 44:369–374

    Article  PubMed  CAS  Google Scholar 

  33. Stuber M, Botnar RM, Danias PG et al (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10:790–799

    Article  PubMed  CAS  Google Scholar 

  34. Wagner M, Rief M, Asbach P et al (2010) Gadofosveset trisodium-enhanced magnetic resonance angiography of the left atrium—a feasibility study. Eur J Radiol 75:166–172

    Article  PubMed  Google Scholar 

  35. (2004) Gadofosveset: MS 325, MS 32520, Vasovist, ZK 236018. Drugs R D 5:339–342

Download references

Disclaimer

The supplement this article is part of is not sponsored by the industry. Dr. Vasanawala and Dr. Lustig have no financial interests. Dr. Vasanawala discusses commercial products/services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyas S. Vasanawala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasanawala, S.S., Lustig, M. Advances in pediatric body MRI. Pediatr Radiol 41 (Suppl 2), 549 (2011). https://doi.org/10.1007/s00247-011-2103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00247-011-2103-6

Keywords

Navigation