Skip to main content

Advertisement

Log in

Postnatal Cardiac Development and Regenerative Potential in Large Mammals

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The neonatal capacity for cardiac regeneration in mice is well studied and has been used to develop many potential strategies for adult cardiac regenerative repair following injury. However, translating these findings from rodents to designing regenerative therapeutics for adult human heart disease remains elusive. Large mammals including pigs, dogs, and sheep are widely used as animal models of humans in preclinical trials of new cardiac drugs and devices. However, very little is known about the fundamental cardiac cell biology and the timing of postnatal cardiac events that influence cardiomyocyte proliferation in these animals. There is emerging evidence that external physiological and environmental cues could be the key to understanding cardiomyocyte proliferative behavior. In this review, we survey available literature on postnatal development in various large mammal models to offer a perspective on the physiological and cellular characteristics that could be regulating cardiomyocyte proliferation. Similarities and differences between developmental milestones, cardiomyocyte maturational events, as well as environmental cues regulating cardiac development, are discussed for various large mammals, with a focus on postnatal cardiac regenerative potential and translatability to the human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41

    PubMed  Google Scholar 

  2. Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A (2013) Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131:e1502–1508

    PubMed  PubMed Central  Google Scholar 

  3. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4:966–977

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tzahor E, Poss KD (2017) Cardiac regeneration strategies: staying young at heart. Science 356:1035–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Liu S, Heallen T, Martin JF (2018) The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 15:672–684

    CAS  PubMed  Google Scholar 

  7. Rumyantsev P (1991) Growth and hyperplasia of cardiac muscle cells. Taylor & Francis, Milton Park

    Google Scholar 

  8. Vivien CJ, Hudson JE, Porrello ER (2016) Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 1:16012

    PubMed  PubMed Central  Google Scholar 

  9. Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143:729–740

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 110:1446–1451

    CAS  PubMed  Google Scholar 

  11. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575

    CAS  PubMed  Google Scholar 

  13. Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221

    CAS  PubMed  Google Scholar 

  14. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253

    CAS  PubMed  Google Scholar 

  15. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    CAS  PubMed  Google Scholar 

  16. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605

    CAS  PubMed  PubMed Central  Google Scholar 

  17. de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J (2009) Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 136:1633–1641

    PubMed  PubMed Central  Google Scholar 

  18. Cao J, Poss KD (2018) The epicardium as a hub for heart regeneration. Nat Rev Cardiol 15:631–647

    PubMed  PubMed Central  Google Scholar 

  19. Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell 44(433–446):e437

    Google Scholar 

  20. Gunthel M, Barnett P, Christoffels VM (2018) Development, proliferation, and growth of the mammalian heart. Mol Ther 26:1599–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci USA 111:16029–16034

    CAS  PubMed  Google Scholar 

  22. Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49:1346–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E (2015) Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. Elife 4:e07455

    PubMed Central  Google Scholar 

  25. Li Y, Asfour H, Bursac N (2017) Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomater 55:120–130

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–579

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA (2017) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227

    CAS  PubMed  Google Scholar 

  29. Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grutzner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364:184–188

    CAS  PubMed  Google Scholar 

  30. Camacho P, Fan H, Liu Z, He JQ (2016) Large mammalian animal models of heart disease. J Cardiovasc Dev Dis 3(4):30

    PubMed Central  Google Scholar 

  31. Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, Tee GZ, Pua CJ, Pena EM, Cheng RB, Chen WC, Abdurrachim D, Lalic J, Tan RS, Lee TH, Zhang J, Cook SA (2018) Early regenerative capacity in the porcine heart. Circulation 138:2798–2808

    PubMed  Google Scholar 

  32. Zhu W, Zhang E, Zhao M, Chong Z, Fan C, Tang Y, Hunter JD, Borovjagin AV, Walcott GP, Chen JY, Qin G, Zhang J (2018) Regenerative potential of neonatal porcine hearts. Circulation 138:2809–2816

    PubMed  Google Scholar 

  33. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual. Firefly Books, Richmond Hill

    Google Scholar 

  34. de Magalhaes JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22:1770–1774

    PubMed  Google Scholar 

  35. Cutler RG (1979) Evolution of human longevity: a critical overview. Mech Ageing Dev 9:337–354

    CAS  PubMed  Google Scholar 

  36. Finn CA (1963) Reproductive capacity and litter size in mice: effect of age and environment. J Reprod Fertil 6:205–214

    CAS  PubMed  Google Scholar 

  37. Chen P, Baas TJ, Mabry JW, Koehler KJ, Dekkers JC (2003) Genetic parameters and trends for litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 81:46–53

    CAS  PubMed  Google Scholar 

  38. Okkens AC, Hekerman TW, de Vogel JW, van Haaften B (1993) Influence of litter size and breed on variation in length of gestation in the dog. Vet Q 15:160–161

    CAS  PubMed  Google Scholar 

  39. Janssens S, Vandepitte W, Bodin L (2004) Genetic parameters for litter size in sheep: natural versus hormone-induced oestrus. Genet Sel Evol 36:543–562

    PubMed  PubMed Central  Google Scholar 

  40. Silva del Rio N, Stewart S, Rapnicki P, Chang YM, Fricke PM (2007) An observational analysis of twin births, calf sex ratio, and calf mortality in Holstein dairy cattle. J Dairy Sci 90:1255–1264

    CAS  PubMed  Google Scholar 

  41. Poore KR, Fowden AL (2004) The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs. J Physiol 558:295–304

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sibly RM, Brown JH (2009) Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat 173:E185–199

    PubMed  PubMed Central  Google Scholar 

  43. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746

    CAS  PubMed  Google Scholar 

  44. Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27:273–281

    CAS  PubMed  Google Scholar 

  45. Peterson CJ, Whitman V, Watson PA, Schuler HG, Morgan HE (1989) Mechanisms of differential growth of heart ventricles in newborn pigs. Circ Res 64:360–369

    CAS  PubMed  Google Scholar 

  46. Grabner W, Pfitzer P (1974) Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol 15:279–294

    CAS  PubMed  Google Scholar 

  47. Kirk GR, Smith DM, Hutcheson DP, Kirby R (1975) Postnatal growth of the dog heart. J Anat 119:461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bishop SP, Hine P (1975) Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv Stud Cardiac Struct Metab 8:77–98

    CAS  PubMed  Google Scholar 

  49. Munnell JF, Getty R (1968) Rate of accumulation of cardiac lipofuscin in the aging canine. J Gerontol 23:154–158

    CAS  PubMed  Google Scholar 

  50. Thornburg K, Jonker S, O'Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289–299

    CAS  PubMed  Google Scholar 

  51. Jonker SS, Louey S, Giraud GD, Thornburg KL, Faber JJ (2015) Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J 29:4346–4357

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER (2003) Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Discov Mol Cell Evol Biol 274:952–961

    PubMed  Google Scholar 

  53. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–2189

    CAS  PubMed  Google Scholar 

  54. Soonpaa MH, Zebrowski DC, Platt C, Rosenzweig A, Engel FB, Field LJ (2015) Cardiomyocyte cell-cycle activity during preadolescence. Cell 163:781–782

    CAS  PubMed  Google Scholar 

  55. Adler CP, Friedburg H, Herget GW, Neuburger M, Schwalb H (1996) Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch 429:159–164

    CAS  PubMed  Google Scholar 

  56. Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM, Zhang X, Jaleel N, MacDonnell SM, Bearzi C, Tillmanns J, Trofimova I, Hosoda T, Mosna F, Cribbs L, Leri A, Kajstura J, Anversa P, Houser SR (2007) Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 100:536–544

    CAS  PubMed  Google Scholar 

  57. Kim MY, Eiby YA, Lumbers ER, Wright LL, Gibson KJ, Barnett AC, Lingwood BE (2014) Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLoS ONE 9:e93407

    PubMed  PubMed Central  Google Scholar 

  58. Pfitzer P (1971) Polyploid nuclei in myocardial cells of the pig. Virchows Arch B Cell Pathol 9:180–186

    CAS  PubMed  Google Scholar 

  59. Bensley JG, De Matteo R, Harding R, Black MJ (2016) Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci Rep 6:23756

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pfitzer P (1972) Polyploid nuclei in myocardial cells of monkeys. Virchows Arch B Cell Pathol 10:268–274

    CAS  PubMed  Google Scholar 

  61. Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28:1463–1477

    CAS  PubMed  Google Scholar 

  62. Ascuitto RJ, Ross-Ascuitto NT (1996) Substrate metabolism in the developing heart. Semin Perinatol 20:542–563

    CAS  PubMed  Google Scholar 

  63. Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113:709–724

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Makinde AO, Kantor PF, Lopaschuk GD (1998) Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188:49–56

    CAS  PubMed  Google Scholar 

  65. Werner JC, Whitman V, Fripp RR, Schuler HG, Morgan HE (1981) Carbohydrate metabolism in isolated, working newborn pig heart. Am J Physiol 241:E364–371

    CAS  PubMed  Google Scholar 

  66. Werner JC, Whitman V, Vary TC, Fripp RR, Musselman J, Schuler HG (1983) Fatty acid and glucose utilization in isolated, working newborn pig hearts. Am J Physiol 244:E19–23

    CAS  PubMed  Google Scholar 

  67. Werner JC, Sicard RE, Schuler HG (1989) Palmitate oxidation by isolated working fetal and newborn pig hearts. Am J Physiol 256:E315–321

    CAS  PubMed  Google Scholar 

  68. Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing SE (1989) Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 256:H9–15

    CAS  PubMed  Google Scholar 

  69. Breuer E, Barta E, Pappova E, Zlatos L (1967) Developmental changes of myocardial metabolism. I. Peculiarities of cardiac carbohydrate metabolism in early postnatal period in dogs. Biologia Neonatorum 11:367–370

    Google Scholar 

  70. Fisher DJ, Heymann MA, Rudolph AM (1980) Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol 238:H399–405

    CAS  PubMed  Google Scholar 

  71. Yin Z, Ren J, Guo W (2015) Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta 1852:47–52

    CAS  PubMed  Google Scholar 

  72. Saggin L, Gorza L, Ausoni S, Schiaffino S (1989) Troponin I switching in the developing heart. J Biol Chem 264:16299–16302

    CAS  PubMed  Google Scholar 

  73. Posterino GS, Dunn SL, Botting KJ, Wang W, Gentili S (1985) Morrison JL (2011) Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus. J Appl Physiol 111:236–243

    Google Scholar 

  74. Locher MR, Razumova MV, Stelzer JE, Norman HS, Moss RL (2011) Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. Am J Physiol Heart Circ Physiol 300:H869–878

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Castro-Ferreira R, Fontes-Carvalho R, Falcao-Pires I, Leite-Moreira AF (2011) The role of titin in the modulation of cardiac function and its pathophysiological implications. Arq Bras Cardiol 96:332–339

    CAS  PubMed  Google Scholar 

  76. Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312

    CAS  PubMed  Google Scholar 

  77. Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975

    CAS  PubMed  Google Scholar 

  78. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen WC, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K, Wang Y (2016) Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv 2:e1600844

    PubMed  PubMed Central  Google Scholar 

  80. Lewis AM, Mathieu-Costello O, McMillan PJ, Gilbert RD (1999) Effects of long-term, high-altitude hypoxia on the capillarity of the ovine fetal heart. Am J Physiol 277:H756–762

    CAS  PubMed  Google Scholar 

  81. Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM (2014) Thyroid hormone action in postnatal heart development. Stem Cell Res 13:582–591

    CAS  PubMed  Google Scholar 

  82. Fisher DA, Klein AH (1981) Thyroid development and disorders of thyroid function in the newborn. N Engl J Med 304:702–712

    CAS  PubMed  Google Scholar 

  83. Chattergoon NN, Louey S, Stork P, Giraud GD, Thornburg KL (2012) Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci 19:642–649

    PubMed  PubMed Central  Google Scholar 

  84. Karra R, Poss KD (2017) Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 127:427–436

    PubMed  PubMed Central  Google Scholar 

  85. Garbern JC, Mummery CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3:a014019

    PubMed  PubMed Central  Google Scholar 

  86. Best KE, Rankin J (2016) Long-term survival of individuals born with congenital heart disease: a systematic review and meta-analysis. J Am Heart Assoc 5:e002846

    PubMed  PubMed Central  Google Scholar 

  87. Triedman JK, Newburger JW (2016) Trends in congenital heart disease: the next decade. Circulation 133:2716–2733

    PubMed  Google Scholar 

  88. Egbe AC, Mittnacht AJ, Nguyen K, Joashi U (2014) Risk factors for morbidity in infants undergoing tetralogy of fallot repair. Ann Pediatr Cardiol 7:13–18

    PubMed  PubMed Central  Google Scholar 

  89. Yutzey KE (2017) Cardiomyocyte proliferation: teaching an old dogma new tricks. Circ Res 120:627–629

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huttenbach Y, Ostrowski ML, Thaller D, Kim HS (2001) Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy. Cardiovasc Pathol 10:119–123

    CAS  PubMed  Google Scholar 

  91. Amir G, Ma X, Reddy VM, Hanley FL, Reinhartz O, Ramamoorthy C, Riemer RK (2008) Dynamics of human myocardial progenitor cell populations in the neonatal period. Ann Thorac Surg 86:1311–1319

    PubMed  Google Scholar 

  92. Silva TF, Souza GK, Simoes MA, Pabis FC, Noronha L (2012) Immunohistochemical expression of cell differentiation and growth in neonate cardiomyocytes. Arq Bras Cardiol 99:797–801

    PubMed  Google Scholar 

  93. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, Liu J (2016) Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 6:23188

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmid G, Pfitzer P (1985) Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 48:59–67

    CAS  PubMed  Google Scholar 

  95. Botting KJ, Wang KC, Padhee M, McMillen IC, Summers-Pearce B, Rattanatray L, Cutri N, Posterino GS, Brooks DA, Morrison JL (2012) Early origins of heart disease: low birth weight and determinants of cardiomyocyte endowment. Clin Exp Pharmacol Physiol 39:814–823

    CAS  PubMed  Google Scholar 

  96. Eisenstein R, Wied GL (1970) Myocardial DNA and protein in maturing and hypertrophied human hearts. Proc Soc Exp Biol Med 133:176–179

    CAS  PubMed  Google Scholar 

  97. Brodsky V, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994) Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 424:429–435

    PubMed  Google Scholar 

  98. Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36:45–51

    CAS  PubMed  Google Scholar 

  99. Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, Splinter BonDurant S, Golos T, Bird I, Shah D (2014) Metabolic gene profile in early human fetal heart development. Mol Hum Reprod 20:690–700

    CAS  PubMed  Google Scholar 

  100. Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, Vergnes L, Fu K, Morselli M, Dunham C, Ding X, Stieg AZ, Gimzewski JK, Pellegrini M, Clark PM, Reue K, Lusis AJ, Ribalet B, Kurdistani SK, Christofk H, Nakatsuji N, Nakano A (2017) Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife 6:e29330

    PubMed  PubMed Central  Google Scholar 

  101. Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69:1226–1233

    CAS  PubMed  Google Scholar 

  102. Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771

    CAS  PubMed  Google Scholar 

  103. Wilkinson JM, Grand RJ (1978) Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31–35

    CAS  PubMed  Google Scholar 

  104. Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72:932–938

    CAS  PubMed  Google Scholar 

  105. Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–1820

    CAS  PubMed  Google Scholar 

  106. Ritter O, Luther HP, Haase H, Baltas LG, Baumann G, Schulte HD, Morano I (1999) Expression of atrial myosin light chains but not alpha-myosin heavy chains is correlated in vivo with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy. J Mol Med (Berl) 77:677–685

    CAS  Google Scholar 

  107. Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390

    CAS  PubMed  Google Scholar 

  108. Ledda-Columbano GM, Molotzu F, Pibiri M, Cossu C, Perra A, Columbano A (2006) Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB J 20:87–94

    CAS  PubMed  Google Scholar 

  109. Olivieri A, Stazi MA, Mastroiacovo P, Fazzini C, Medda E, Spagnolo A, De Angelis S, Grandolfo ME, Taruscio D, Cordeddu V, Sorcini M, Study Group for Congenital H (2002) A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J Clin Endocrinol Metab 87:557–562

    Google Scholar 

  110. Chowdhury D, Ojamaa K, Parnell VA, McMahon C, Sison CP, Klein I (2001) A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg 122:1023–1025

    CAS  PubMed  Google Scholar 

  111. Lockhart M, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol 91:535–550

    CAS  PubMed  PubMed Central  Google Scholar 

  112. McMahon CJ, Nihill MR, Denfield S (2003) Neoaortic root dilation associated with left coronary artery stenosis following arterial switch procedure. Pediatr Cardiol 24:43–46

    CAS  PubMed  Google Scholar 

  113. Farooqi KM, Sutton N, Weinstein S, Menegus M, Spindola-Franco H, Pass RH (2012) Neonatal myocardial infarction: case report and review of the literature. Congenit Heart Dis 7:E97–102

    PubMed  Google Scholar 

  114. Nakagama Y, Inuzuka R, Ichimura K, Hinata M, Takehara H, Takeda N, Kakiuchi S, Shiraga K, Asakai H, Shindo T, Hirata Y, Saitoh M, Oka A (2018) Accelerated cardiomyocyte proliferation in the heart of a neonate with LEOPARD syndrome-associated fatal cardiomyopathy. Circ Heart Fail 11:e004660

    PubMed  Google Scholar 

  115. Tsang V, Yacoub M, Sridharan S, Burch M, Radley-Smith R, Khaghani A, Savoldo B, Amrolia PJ (2009) Late donor cardiectomy after paediatric heterotopic cardiac transplantation. Lancet 374:387–392

    CAS  PubMed  Google Scholar 

  116. Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC (2011) Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg 92:1761–1765

    PubMed  Google Scholar 

  117. Wesselhoeft H, Fawcett JS, Johnson AL (1968) Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation 38:403–425

    CAS  PubMed  Google Scholar 

  118. Porrello ER, Olson EN (2014) A neonatal blueprint for cardiac regeneration. Stem Cell Res 13:556–570

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Godwin JW, Debuque R, Salimova E, Rosenthal NA (2017) Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med 2(1):22

    PubMed  PubMed Central  Google Scholar 

  120. Gray GA, Toor IS, Castellan R, Crisan M, Meloni M (2018) Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Curr Opin Physiol 1:46–51

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Yutzey lab for valuable input and discussion.

Funding

This study was funded by NIH R01HL135848, R01HL142217, and Cincinnati Children’s Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Yutzey.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Research Involving Human and Animal Rights

This article does not contain any experiments with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velayutham, N., Agnew, E.J. & Yutzey, K.E. Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatr Cardiol 40, 1345–1358 (2019). https://doi.org/10.1007/s00246-019-02163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02163-7

Keywords

Navigation