Skip to main content
Log in

Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation

  • Invited Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Randall’s plaque (RP) deposits seem to be consistent among the most common type of kidney stone formers, idiopathic calcium oxalate stone formers. This group forms calcium oxalate renal stones without any systemic symptoms, which contributes to the difficulty of understanding and treating this painful and recurring disease. Thus, the development of an in vitro model system to study idiopathic nephrolithiasis, beginning with RP pathogenesis, can help in identifying how plaques and subsequently stones form. One main theory of RP formation is that calcium phosphate deposits initially form in the basement membrane of the thin loops of Henle, which then fuse and spread into the interstitial tissue, and ultimately make their way across the urothelium, where upon exposure to the urine, the mineralized tissue serves as a nidus for overgrowth with calcium oxalate into a stone. Our group has found that many of the unusual morphologies found in RP and stones, such as concentrically laminated spherulites and mineralized collagenous tissue, can be reproduced in vitro using a polymer-induced liquid precursor (PILP) process, in which acidic polypeptides induce a liquid phase amorphous precursor to the mineral, yielding non-equilibrium crystal morphologies. Given that there are many acidic proteins and polysaccharides present in the renal tissue and urine, we have put forth the hypothesis that the PILP system may be involved in urolithiasis. Therefore, our goal is to develop an in vitro model system of these two stages of composite stone formation to study the role that various acidic macromolecules may play. In our initial experiments presented here, the development of “biomimetic” RP was investigated, which will then serve as a nidus for calcium oxalate overgrowth studies. To mimic the tissue environment, MatriStem® (ACell, Inc.), a decellularized porcine urinary bladder matrix was used, because it has both an intact epithelial basement membrane surface and a tunica propria layer, thus providing the two types of matrix constituents found associated with mineral in the early stages of RP formation. We found that when using the PILP process to mineralize this tissue matrix, the two sides led to dramatically different mineral textures, and they bore a striking resemblance to native RP, which was not seen in the tissue mineralized via the classical crystal nucleation and growth process. The interstitium side predominantly consisted of collagen-associated mineral, while the luminal side had much less mineral, which appeared to be tiny spherules embedded within the basement membrane. Although these studies are only preliminary, they support our hypothesis that kidney stones may involve non-classical crystallization pathways induced by the large variety of macromolecular species in the urinary environment. We believe that mineralization of native tissue scaffolds is useful for developing a model system of stone formation, with the ultimate goal of developing strategies to avoid RP and its detrimental consequences in stone formation, or developing therapeutic treatments to prevent or cure the disease. Supported by NIDDK grant RO1DK092311.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Randall A (1940) Papillary pathology as precursor of primary renal calculus. J Urol 44:580–589

    CAS  Google Scholar 

  2. Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Coe F et al (2010) Three pathways for human kidney stone formation. Urol Res 38(3):147–160

    Article  PubMed Central  PubMed  Google Scholar 

  4. Evan A (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25(5):831–841

    Article  PubMed Central  PubMed  Google Scholar 

  5. Al-Atar U et al (2010) Mechanism of calcium oxalate monohydrate kidney stones formation: layered spherulitic growth. Chem Mater 22(4):1318–1329

    Article  CAS  Google Scholar 

  6. Evan A et al (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69(8):1313–1318

    CAS  PubMed  Google Scholar 

  7. Evan AP (2007) Histopathology predicts the mechanism of stone formation. AIP Conf Proc 900(1):15–25

    Article  Google Scholar 

  8. Evan AP et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec: Adv Integr Anat Evol Biol 290(10):1315–1323

    Article  CAS  Google Scholar 

  9. Evan AP et al (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68(1):145–154

    Article  CAS  PubMed  Google Scholar 

  10. Evan AP et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111(5):607–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158(6):2062–2064

    Article  CAS  PubMed  Google Scholar 

  12. Bagga HS et al (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40(1):1–12

    Article  PubMed Central  PubMed  Google Scholar 

  13. Grases F et al (2013) Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study. BMC Urol 13:14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Khan SR et al (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187(3):1094–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Matlaga BR et al (2006) Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 175(5):1720–1724

    Article  PubMed  Google Scholar 

  16. Miller NL et al (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103(7):966–971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sepe V et al (2006) Henle loop basement membrane as initial site for Randall plaque formation. Am J Kidney Dis 48(5):706–711

    Article  CAS  PubMed  Google Scholar 

  18. Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci 106(6):549–561

    Article  CAS  PubMed  Google Scholar 

  19. Vervaet BA et al (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transplant 24(7):2030–2035

    Article  CAS  PubMed  Google Scholar 

  20. Ghadially FN (2001) As you like it, Part 3: a critique and historical review of calcification as seen with the electron microscope. Ultrastruct Pathol 25(3):243–267

    Article  CAS  PubMed  Google Scholar 

  21. Stoller ML et al (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156(4):1263–1266

    Article  CAS  PubMed  Google Scholar 

  22. Stoller ML et al (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171(5):1920–1924

    Article  PubMed  Google Scholar 

  23. Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157(1):376–383

    Article  CAS  PubMed  Google Scholar 

  24. Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39(4):231–243

    Article  PubMed  Google Scholar 

  25. Bazin D, Daudon M (2012) Pathological calcifications and selected examples at the medicine-solid-state physics interface. J Phys D Appl Phys 45(38):383001

    Article  Google Scholar 

  26. Amos F et al (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37(1):11–17

    Article  PubMed Central  PubMed  Google Scholar 

  27. Khan S (2006) Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 34(2):86–91

    Article  PubMed  Google Scholar 

  28. Olszta MJ et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58(3–5):77–116

    Article  Google Scholar 

  29. Ohman S, Larsson L (1992) Evidence for Randall’s plaques to be the origin of primary renal stones. Med Hypotheses 39(4):360–363

    Article  CAS  PubMed  Google Scholar 

  30. Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23(2):194–199

    Article  CAS  PubMed  Google Scholar 

  31. Tiselius HG et al (2009) Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res 37(4):181–192

    Article  CAS  PubMed  Google Scholar 

  32. Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186(3):1107–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Nancollas G, Henneman Z (2010) Calcium oxalate: calcium phosphate transformations. Urol Res 38(4):277–280

    Article  CAS  PubMed  Google Scholar 

  34. Hug S et al (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8(4):1226–1233

    Article  CAS  Google Scholar 

  35. Saw NK, Rao PN, Kavanagh JP (2008) A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 36(1):11–15

    Article  CAS  PubMed  Google Scholar 

  36. Thurgood LA et al (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9(9):4745–4757

    Article  CAS  PubMed  Google Scholar 

  37. Achilles W (1997) In vitro crystallisation systems for the study of urinary stone formation. World J Urol 15(4):244–251

    Article  CAS  PubMed  Google Scholar 

  38. Christmas KG et al (2002) Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species. J Colloid Interface Sci 256(1):168–174

    Article  CAS  PubMed  Google Scholar 

  39. Hirose M et al (2012) Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice. Urol Res 40(2):121–129

    Article  CAS  PubMed  Google Scholar 

  40. Kolbach AM et al (2012) Relative deficiency of acidic isoforms of osteopontin from stone former urine. Urol Res 40(5):447–454

    Article  CAS  PubMed  Google Scholar 

  41. Okada A et al (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23(10):1629–1637

    Article  CAS  PubMed  Google Scholar 

  42. Okada A et al (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25(12):2701–2711

    Article  PubMed  Google Scholar 

  43. Lan M et al (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293(6):F1935–F1943

    Article  Google Scholar 

  44. Liu Y et al (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Renal Physiol 299(3):F469–F478

    Article  PubMed Central  PubMed  Google Scholar 

  45. Grohe B et al (2009) Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions. Langmuir 25(19):11635–11646

    Article  CAS  PubMed  Google Scholar 

  46. Kleinman JG et al (1995) Expression of osteopontin, a urinary inhibitor of stone mineral crystal growth, in rat kidney. Kidney Int 47(6):1585–1596

    Article  CAS  PubMed  Google Scholar 

  47. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

    Article  CAS  PubMed  Google Scholar 

  48. Kim IW Biomimetic and bioinspired crystallization with macromolecular additives

  49. Marangella M et al (1985) Urine saturation with calcium salts in normal subjects and idiopathic calcium stone-formers estimated by an improved computer model system. Urol Res 13(4):189–193

    Article  CAS  PubMed  Google Scholar 

  50. Wesson JA et al (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14(1):139–147

    Article  CAS  PubMed  Google Scholar 

  51. Xie A-J et al (2009) Formation of calcium oxalate concentric precipitate rings in two-dimensional agar gel systems containing Ca2+ –RE3+(RE=Er, Gd and La)–C2O4 2−. Colloids Surfaces A: Physicochem Eng Aspects 332(2):192–199

    Article  CAS  Google Scholar 

  52. Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107(1):59

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Gnessin E, Lingeman JE, Evan AP (2010) Pathogenesis of renal calculi. Turkish J Urol 36(2):190–199

    Article  Google Scholar 

  54. Khan SR (2012) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811

    Article  PubMed  Google Scholar 

  55. Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38(4):281–292

    Article  CAS  PubMed  Google Scholar 

  56. Grover PK, Kim DS, Ryall RL (2002) The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis. Mol Med 8(4):200–209

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Amos FF et al. (2007) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: biomineralization—medical aspects of solubility. Wiley, New York. pp. 125–217

  58. Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72(5):583–591

    Article  CAS  PubMed  Google Scholar 

  59. Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210(4):719–734

    Article  CAS  Google Scholar 

  60. Jee S–S, Thula TT, Gower LB (2010) Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater 6(9):3676–3686

    Article  CAS  PubMed  Google Scholar 

  61. Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108(11):4551–4627

    Article  CAS  PubMed  Google Scholar 

  62. Ryall R (2008) The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res 36(2):77–97

    Article  PubMed  Google Scholar 

  63. Golub E (2011) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33(5):409–417

    Article  PubMed Central  PubMed  Google Scholar 

  64. Nudelman F et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Bradt J-H et al (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11(10):2694–2701

    Article  CAS  Google Scholar 

  66. Rodriguez DE et al (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10(1):494–507

    Article  CAS  PubMed  Google Scholar 

  67. Thula TT et al (2010) Mimicking the nanostructure of bone: comparison of polymeric process-directing agents. Polymers 3(1):10–35

    Article  Google Scholar 

  68. Kim YK et al (2010) Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials 31(25):6618–6627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Baumann JM, Affolter B, Casella R (2011) Aggregation of freshly precipitated calcium oxalate crystals in urine of calcium stone patients and controls. Urol Res 39(6):421–427

    Article  CAS  PubMed  Google Scholar 

  70. Silverman L, Boskey AL (2004) Diffusion systems for evaluation of biomineralization. Calcif Tissue Int 75:494–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Viswanathan P et al (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res 39(4):269–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Gericke A et al (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77(1):45–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hunter GK et al (1985) Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate. Biochem J 228(2):463–469

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci 90(18):8562–8565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Boskey AL et al (2012) Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth. Biochem Biophys Res Commun 419(2):333–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13

    Article  CAS  PubMed  Google Scholar 

  77. Freytes DO et al (2008) Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res A 87A(4):862–872

    Article  CAS  Google Scholar 

  78. Azuma N et al (2006) A rapid method for purifying osteopontin from bovine milk and interaction between osteopontin and other milk proteins. Int Dairy J 16(4):370–378

    Article  CAS  Google Scholar 

  79. Sørensen E, Petersen T (1993) Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J Dairy Res 60:189–197

    Article  PubMed  Google Scholar 

  80. Thula TT et al (2011) In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater 7(8):3158–3169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Bewernitz MA et al (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291–312

    Article  CAS  Google Scholar 

  82. Kwak S-Y et al (2009) Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J Biol Chem 284(28):18972–18979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Deshpande AS et al (2011) Primary structure and phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 12(8):2933–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232(9):1121–1129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH) under Award Number R01DK092311. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors gratefully acknowledge Drs. Sharon W. Matthews and Dr. Jill W. Verlander of COM electron microscopy Core for assisting with TEM sectioning, as well as ACell, Inc. for kindly providing the Matristem® samples. We would also like to thank the Major Analytical Instrumentation Center for use of their SEM and TEM.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Gower.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidambaram, A., Rodriguez, D., Khan, S. et al. Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43 (Suppl 1), 77–92 (2015). https://doi.org/10.1007/s00240-014-0704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-014-0704-x

Keywords

Navigation