Skip to main content
Log in

Intronic AT Skew is a Defendable Proxy for Germline Transcription but does not Predict Crossing-Over or Protein Evolution Rates in Drosophila melanogaster

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Recent evidence suggests that germline transcription may affect both protein evolutionary rates, possibly mediated by repair processes, and recombination rates, possibly mediated by chromatin and epigenetic modification. Here, we test these propositions in Drosophila melanogaster. The challenge for such analyses is to provide defendable measures of germline gene expression. Intronic AT skew is a good candidate measure as it is thought to be a consequence, at least in part, of transcription-coupled repair. Prior evidence suggests that intronic AT skew in D. melanogaster is not affected by proximity to intron extremities and differs between transcribed DNA and flanking sequence. We now also establish that intronic AT skew is a defendable proxy for germline expression as (a) it is more similar than expected by chance between introns of the same gene (which is not accounted for by physical proximity), (b) is correlated with male germline expression, and (c) is more pronounced in broadly expressed genes. Furthermore, (d) a trend for intronic skew to differ between 3′ and 5′ ends of genes is particular to broadly expressed genes. Finally, (e) controlling for physical distance, introns of proximate genes are most different in skew if they have different tissue specificity. We find that intronic AT skew, employed as a proxy for germline transcription, correlates neither with recombination rates nor with the rate of protein evolution. We conclude that there is no prima facie evidence that germline expression modulates recombination rates or monotonically affects protein evolution rates in D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bachtrog D (2003) Protein evolution and codon usage bias on the neo-sex chromosomes of Drosophila miranda. Genetics 165:1221–1232

    CAS  PubMed  Google Scholar 

  • Berchowitz LE, Hanlon SE, Lieb JD, Copenhaver GP (2009) A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Res 19:2245–2257

    Article  CAS  PubMed  Google Scholar 

  • Berglund J, Pollard KS, Webster MT (2009) Hotspots of biased nucleotide substitutions in human genes. PLoS Biol 7:e26

    Article  PubMed  Google Scholar 

  • Betancourt AJ, Presgraves DC (2002) Linkage limits the power of natural selection in Drosophila. Proc Natl Acad Sci USA 99:13616–13620

    Article  CAS  PubMed  Google Scholar 

  • Betancourt AJ, Welch JJ, Charlesworth (2009) Reduced effectiveness of selection caused by a lack of recombination. Curr Biol 19:655–660

    Article  CAS  PubMed  Google Scholar 

  • Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111

    Article  CAS  PubMed  Google Scholar 

  • Buard J, Barthes P, Grey C, de Massy B (2009) Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 28:2616–2624

    Article  CAS  PubMed  Google Scholar 

  • Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  CAS  PubMed  Google Scholar 

  • Comeron JM (2004) Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 167:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • de Wit E, Braunschweig U, Greil F, Bussemaker HJ, van Steensel B (2008) Global chromatin domain organization of the Drosophila genome. PLoS Genet 4:e1000045

    Article  PubMed  Google Scholar 

  • Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311

    Article  CAS  PubMed  Google Scholar 

  • Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, Arabidopsis. Proc Natl Acad Sci USA 96:4482–4487

    Article  CAS  PubMed  Google Scholar 

  • Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17:68–74

    CAS  PubMed  Google Scholar 

  • Eyre-Walker A, Hurst LD (2001) The evolution of isochores. Nat Rev Genet 2:549–555

    Article  CAS  PubMed  Google Scholar 

  • Galtier N, Duret L (2007) Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet 23:273–277

    Article  CAS  PubMed  Google Scholar 

  • Galtier N, Duret L, Glemin S, Ranwez V (2009) GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet 25:1–5

    Article  CAS  PubMed  Google Scholar 

  • Green P, Ewing B, Miller W, Thomas PJ, Program NCS, Green ED (2003) Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet 33:514–517

    Article  CAS  PubMed  Google Scholar 

  • Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  CAS  PubMed  Google Scholar 

  • Haddrill PR, Charlesworth B (2008) Non-neutral processes drive the nucleotide composition of non-coding sequences in Drosophila. Biol Lett 4:438–441

    Article  CAS  PubMed  Google Scholar 

  • Haddrill PR, Waldron FM, Charlesworth B (2008) Elevated levels of expression associated with regions of the Drosophila genome that lack crossing over. Biol Lett 4:758–761

    Article  PubMed  Google Scholar 

  • Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160:595–608

    CAS  PubMed  Google Scholar 

  • Huvet M, Nicolay S, Touchon M, Audit B, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17:1278–1285

    Article  CAS  PubMed  Google Scholar 

  • Kulathinal RJ, Bennettt SM, Fitzpatrick CL, Noor MAF (2008) Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci USA 105:10051–10056

    Article  CAS  PubMed  Google Scholar 

  • Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG (2008) Evolution of protein-coding genes in Drosophila. Trends Genet 24:114–123

    Article  CAS  PubMed  Google Scholar 

  • Lercher MJ, Urrutia AO, Hurst LD (2002) Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet 31:180–183

    Article  CAS  PubMed  Google Scholar 

  • Liao BY, Scott NM, Zhang JZ (2006) Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. Mol Biol Evol 23:2072–2080

    Article  CAS  PubMed  Google Scholar 

  • Majewski J (2003) Dependence of mutational asymmetry on gene-expression levels in the human genome. Am J Hum Genet 73:688–692

    Article  CAS  PubMed  Google Scholar 

  • Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454:479–485

    Article  CAS  PubMed  Google Scholar 

  • Marais G, Mouchiroud D, Duret L (2003) Neutral effect of recombination on base composition in Drosophila. Genet Res 81:79–87

    Article  CAS  PubMed  Google Scholar 

  • McVicker G, Green P (2010) Genomic signatures of germline gene expression. Genome Res: doi: 10.1101/gr.106666.110; Epub date 2010/08/06

  • Mugal CF, Wolf JB, von Grunberg HH, Ellegren H (2010) Conservation of neutral substitution rate and substitutional asymmetries in mammalian genes. Genome Biol Evol 2:19–28

    Article  CAS  PubMed  Google Scholar 

  • Nagylaki T (1983) Evolution of a finite population under gene conversion. Proc Natl Acad Sci USA 80:6278–6281

    Article  CAS  PubMed  Google Scholar 

  • Necsulea A, Guillet C, Cadoret J-C, Prioleau M-N, Duret L (2009a) The relationship between DNA replication and human genome organization. Mol Biol Evol 26:729–741

    Article  CAS  PubMed  Google Scholar 

  • Necsulea A, Semon M, Duret L, Hurst LD (2009b) Monoallelic expression and tissue specificity are associated with high crossover rates. Trends Genet 25:519–522

    Article  CAS  PubMed  Google Scholar 

  • Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158:927–931

    CAS  PubMed  Google Scholar 

  • Parmley JL, Urrutia AO, Potrzebowski L, Kaessmann H, Hurst LD (2007) Splicing and the evolution of proteins in mammals. PLoS Biol 5:343–353

    Article  CAS  Google Scholar 

  • Polak P, Arndt PF (2008) Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res 18:1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Powell JR, Moriyama EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci USA 94:7784–7790

    Article  CAS  PubMed  Google Scholar 

  • Presgraves DC (2005) Recombination enhances protein adaptation in Drosophila melanogaster. Curr Biol 15:1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ (2009) HapMap methylation-associated SNPs, markers of germline DNA methylation, positively correlate with regional levels of human meiotic recombination. Genome Res 19:581–589

    Article  CAS  PubMed  Google Scholar 

  • Singh ND, Aquadro CF, Clark AG (2009) Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster. J Mol Evol 69:42–53

    Article  CAS  PubMed  Google Scholar 

  • Spellman PT, Rubin GM (2002) Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1:5

    Article  PubMed  Google Scholar 

  • Sun M, Hurst LD, Carmichael GG, Chen J (2005) Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res 33:5533–5543

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Hurst LD, Carmichael GG, Chen J (2006) Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcription and organismic complexity. Genome Res 16:922–933

    Article  CAS  PubMed  Google Scholar 

  • Svejstrup JQ (2002) Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 3:21–29

    Article  CAS  PubMed  Google Scholar 

  • Takano-Shimizu T (2001) Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol Biol Evol 18:606–619

    CAS  PubMed  Google Scholar 

  • Touchon M, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2004) Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978

    Article  CAS  PubMed  Google Scholar 

  • Touchon M, Nicolay S, Audit B, Brodie of Brodie EB, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2005) Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci USA 102:9836–9841

    Article  CAS  PubMed  Google Scholar 

  • Vibranovski MD, Lopes HF, Karr TL, Long M (2009) Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 5:e1000731

    Article  PubMed  Google Scholar 

  • Warnecke T, Hurst LD (2007) Evidence for a trade-off between translational efficiency and splicing regulation in determining synonymous codon usage in Drosophila melanogaster. Mol Biol Evol 24:2755–2762

    Article  CAS  PubMed  Google Scholar 

  • Warnecke T, Parmley JL, Hurst LD (2008) Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes. Genome Biol 9:R29

    Article  PubMed  Google Scholar 

  • Weber CC, Hurst LD (2009) Protein rates of evolution are predicted by double-strand break events, independent of crossing-over rates. Genome Biol Evol 1:340–349

    Article  CAS  PubMed  Google Scholar 

  • Webster MT, Smith NG, Lercher MJ, Ellegren H (2004) Gene expression, synteny, and local similarity in human noncoding mutation rates. Mol Biol Evol 21:1820–1830

    Article  CAS  PubMed  Google Scholar 

  • Wu TC, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518

    Article  CAS  PubMed  Google Scholar 

  • Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-Saban S, Safran M, Domany E, Lancet D, Shmueli O (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21:650–659

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yu J (2009) A comparative analysis of divergently-paired genes (DPGs) among Drosophila and vertebrate genomes. BMC Evol Biol 9:55

    Article  PubMed  Google Scholar 

  • Zhang Z, Parsch J (2005) Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression. Mol Biol Evol 22:1945–1947

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hambuch TM, Parsch J (2004) Molecular evolution of sex-biased genes in Drosophila. Mol Biol Evol 21:2130–2139

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B (2007) Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450:233–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CCW is funded by the University of Bath. LDH is a Royal Society Wolfson Research Merit Award holder. We thank Amanda Larracuente for providing the recombination rate estimates and two anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence D. Hurst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, C.C., Hurst, L.D. Intronic AT Skew is a Defendable Proxy for Germline Transcription but does not Predict Crossing-Over or Protein Evolution Rates in Drosophila melanogaster . J Mol Evol 71, 415–426 (2010). https://doi.org/10.1007/s00239-010-9395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9395-2

Keywords

Navigation