Skip to main content
Log in

An Extensive Study of Mutation and Selection on the Wobble Nucleotide in tRNA Anticodons in Fungal Mitochondrial Genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Two alternative hypotheses aim to predict the wobble nucleotide of tRNA anticodons in mitochondrion. The codon-anticodon adaptation hypothesis predicts that the wobble nucleotide of tRNA anticodon should evolve toward maximizing the Watson-Crick base pairing with the most frequently used codon within each synonymous codon family. In contrast, the wobble versatility hypothesis argues that the nucleotide at the wobble site should be occupied by a nucleotide most versatile in wobble pairing, i.e., the wobble site of the tRNA anticodon should be G for NNY codon families and U for NNR and NNN codon families (where Y stands for C or U, R for A or G, and N for any nucleotide). We examined codon usage and anticodon wobble sites in 36 fungal genomes to evaluate these two alternative hypotheses and identify exceptional cases that deserve new explanations. While the wobble versatility hypothesis is generally supported, there are interesting exceptions involving tRNAArg translating the CGN codon family, tRNATrp translating the UGR codon family, and tRNAMet translating the AUR codon family. Our results suggest that the potential to suppress stop codons, the historical inertia, and the conflict between translation initiation and elongation can all contribute to determining the wobble nucleotide of tRNA anticodons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agris PF (2004) Decoding the genome: a modified view. Nucleic Acids Res 32:223–238

    Article  PubMed  CAS  Google Scholar 

  • Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139:1067–1076

    PubMed  CAS  Google Scholar 

  • Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene 205:269–278

    Article  PubMed  CAS  Google Scholar 

  • Akashi H (2003) Translational selection and yeast proteome evolution. Genetics 164:1291–1303

    PubMed  CAS  Google Scholar 

  • Andachi Y, Yamao F, Iwami M, Muto A, Osawa S (1987) Occurrence of unmodified adenine and uracil at the first position of anticodon in threonine tRNAs in Mycoplasma capricolum. Proc Natl Acad Sci USA 84:7398–7402

    Article  PubMed  CAS  Google Scholar 

  • Barciszewska MZ, Keith G, Kubli E, Barciszewski J (1986) The primary structure of wheat germ tRNAArg—the substrate for arginyl-tRNAArg:protein transferase. Biochimie 68:319–323

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Anderson S, Bankier AT, de Bruijn MH, Chen E, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3164–3166

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Beier H (1998) Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 26:1390–1395

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    PubMed  CAS  Google Scholar 

  • Berg OG (1996) Selection intensity for codon bias and the effective population size of Escherichia coli. Genetics 142:1379–1382

    PubMed  CAS  Google Scholar 

  • Berg OG, Martelius M (1995) Synonymous substitution-rate constants in Escherichia coli and Salmonella typhimurium and their relationship to gene expression and selection pressure. J Mol Evol 41:449–456

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28:357–360

    Article  PubMed  CAS  Google Scholar 

  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77:3167–3170

    Article  PubMed  CAS  Google Scholar 

  • Boren T, Elias P, Samuelsson T, Claesson C, Barciszewska M, Gehrke CW, Kuo KC, Lustig F (1993) Undiscriminating codon reading with adenosine in the wobble position. J Mol Biol 230:739–749

    Article  PubMed  CAS  Google Scholar 

  • Bulmer M (1987) Coevolution of codon usage and transfer RNA abundance. Nature 325:728–730

    Article  PubMed  CAS  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    PubMed  CAS  Google Scholar 

  • Chen P, Qian Q, Zhang S, Isaksson LA, Bjork GR (2002) A cytosolic tRNA with an unmodified adenosine in the wobble position reads a codon ending with the non-complementary nucleoside cytidine. J Mol Biol 317:481–492

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15:11–17

    Article  PubMed  Google Scholar 

  • Eyre-Walker A (1996) Synonymous codon bias is related to gene length in Escherichia coli: Selection for translational accuracy? Mol Biol Evol 13:864–872

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies with a molecular clock. Syst Zool 34:152–161

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies and quantitative methods. Annu Rev Ecol Syst 19:445–471

    Article  Google Scholar 

  • Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7064

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Moriyama EN, Sawyer SA (1994) Selection intensity for codon bias. Genetics 1138:227–234

    Google Scholar 

  • Hatfield D, Rice M (1978) Patterns of codon recognition by isoacceptor aminoacyl-tRNAs from wheat germ. Nucleic Acids Res 5:3491–3502

    Article  PubMed  CAS  Google Scholar 

  • Heckman JE, Sarnoff J, Alzner-DeWeerd B, Yin S, RajBhandary UL (1980) Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3159–3163

    Article  PubMed  CAS  Google Scholar 

  • Higgs PG, Jameson D, Jow H, Rattray M (2003) The evolution of tRNA-Leu genes in animal mitochondrial genomes. J Mol Evol 57:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E coli translational system. J Mol Biol 151:389–409

    Article  PubMed  CAS  Google Scholar 

  • Inagaki Y, Kojima A, Bessho Y, Hori H, Ohama T, Osawa S (1995) Translation of synonymous codons in family boxes by Mycoplasma capricolum tRNAs with unmodified uridine or adenosine at the first anticodon position. J Mol Biol 251:486–492

    Article  PubMed  CAS  Google Scholar 

  • Jermiin L, Graur D, Crozier R (1995) Evidence from analyses of intergenic regions for strand-specific directional mutation pressure in metazoan mitochondrial DNA. Mol Biol Evol 12:558–563

    CAS  Google Scholar 

  • Li S, Pelka H, Schulman LH (1993) The anticodon and discriminator base are important for aminoacylation of Escherichia coli tRNA(Asn). J Biol Chem 268:18335–18339

    PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  • Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    PubMed  CAS  Google Scholar 

  • Lobry JR, Sueoka N (2002) Asymmetric directional mutation pressures in bacteria. Genome Biol 3(10):1–14

    Article  Google Scholar 

  • Martin RP, Sibler AP, Gehrke CW, Kuo K, Edmonds CG, McCloskey JA, Dirheimer G (1990) 5-[[(Carboxymethyl)amino]methyl]uridine is found in the anticodon of yeast mitochondrial tRNAs recognizing two-codon families ending in a purine. Biochemistry 29:956–959

    Article  PubMed  CAS  Google Scholar 

  • McInerney JO (1998) Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA 95:10698–10703

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Jukes T (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Jukes TH (1995) On codon reassignment. J Mol Evol 41:247–249

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    PubMed  CAS  Google Scholar 

  • Pallanck L, Schulman LH (1991) Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc Natl Acad Sci USA 88:3872–3876

    Article  PubMed  CAS  Google Scholar 

  • Pallanck L, Li S, Schulman LH (1992) The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo. J Biol Chem 267:7221–7223

    PubMed  CAS  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358

    Article  PubMed  CAS  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sancar A, Sancar GB (1988) DNA repair enzymes. Annu Rev Biochem 57:29–67

    Article  PubMed  CAS  Google Scholar 

  • Schulman LH (1991) Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol 41:23–87

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Higgs PG (2005) A unified model of codon reassignment in alternative genetic codes. Genetics 170:831–840

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688

    Article  PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Tuohy TM, Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125–5143

    Article  PubMed  CAS  Google Scholar 

  • Sibler AP, Dirheimer G, Martin RP (1986) Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs. FEBS Lett 194:131–138

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tanaka M, Ozawa T (1994) Strand asymmetry in human mitochondrial DNA mutations. Genomics 22:327–335

    Article  PubMed  CAS  Google Scholar 

  • Tong KL, Wong JT (2004) Anticodon and wobble evolution. Gene 333:169–177

    Article  PubMed  CAS  Google Scholar 

  • Xia X (1996) Maximizing transcription efficiency causes codon usage bias. Genetics 144:1309–1320

    PubMed  CAS  Google Scholar 

  • Xia X (1998) How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149:37–44

    PubMed  CAS  Google Scholar 

  • Xia X (2001) Data analysis in molecular biology and evolution. Kluwer Academic, Boston

    Google Scholar 

  • Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345:13–20

    Article  PubMed  CAS  Google Scholar 

  • Xia X (2007) Bioinformatics and the cell: modern computational approaches in genomics, proteomics and transcriptomics. Springer, New York

    Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Huang H, Carullo M, Betran E, Moriyama EN (2007) Conflict between translation initiation and elongation in vertebrate mitochondrial genomes. PLoS ONE 2:e227

    Article  PubMed  CAS  Google Scholar 

  • Yokobori S, Suzuki T, Watanabe K (2001) Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J Mol Evol 53:314–326

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Nishimura S (1995) Modified nucleotides and codon recognition. In: Soll D, RajBhandary U (eds) tRNA: structure, biosynthesis and function. ASM Press, Washington, pp 207–223

    Google Scholar 

Download references

Acknowledgments

This study is supported by the CAS/SAFEA International Partnership Program for Creative Research Teams and by NSERC’s Discovery and Strategic Grants to XX. We thank S. Aris-Brosou, E. Rocha, T. Xing, and X. Yao for discussion and comments. Two anonymous reviewers helped clarify ambiguities and correct grammatical errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhua Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carullo, M., Xia, X. An Extensive Study of Mutation and Selection on the Wobble Nucleotide in tRNA Anticodons in Fungal Mitochondrial Genomes. J Mol Evol 66, 484–493 (2008). https://doi.org/10.1007/s00239-008-9102-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9102-8

Keywords

Navigation