Skip to main content
Log in

A New Retroposed Gene in Drosophila Heterochromatin Detected by Microarray-Based Comparative Genomic Hybridization

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A genomic pattern of new gene origination is often dependent on a genomic method that can efficiently identify a statistically adequate number of recently originated genes. The heterochromatic regions have often been viewed as genomic deserts with low coding potential and thus a low flux of new genes. However, increasing reports revealed unexpected roles of heterochromatic regions in the evolution of genes and genomes. We identified recently retroposed genes that originated in heterochromatic regions in Drosophila, by developing microarray-based comparative genomic hybridization (CGH) with multiple species. This new gene family, named Ifc-2h, originated in the common ancestor of the clade of D. simulans, D. mauritiana, and D. sechellia. The sequence features and phylogenetic distribution indicated that Ifc-2h resulted from the retroposition from its parental gene, Infertile crescent (Ifc), and integrated into heterochromatic region of common ancester of the three sibling species 2 million years ago. Expression analysis revealed that Ifc-2h had developed a new expression pattern by recruiting a putative regulatory element from its target sequence. The distribution of indel variation in Ifc-2h of D. simulans and D. mauritiana revealed a significant sequence constraint, suggesting that the Ifc-2h gene may be functional. These analyses cast fresh insight into the evolution of heterochromatin and the origin of its coding regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrett M, Scheffer A, Ben-Dor A, et al. (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101:17765–17770

    Article  PubMed  CAS  Google Scholar 

  • Begun D (1997) Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics 145:375–382

    PubMed  CAS  Google Scholar 

  • Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542

    Article  PubMed  CAS  Google Scholar 

  • Betran E, Long M (2003) Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics 164:977–988

    PubMed  CAS  Google Scholar 

  • Betran E, Thornton K, Long M (2002) Retroposed new genes out of the X in Drosophila. Genome Res 12:1854–1859

    Article  PubMed  CAS  Google Scholar 

  • Braverman J, Lazzaro BP, Aguade M, Langley CH (2005) DNA sequence polymorphism and divergence at the erect wing and suppressor of sable loci of Drosophila melanogaster and D. simulans. Genetics 170:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303

    PubMed  CAS  Google Scholar 

  • Choo K (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    Article  PubMed  CAS  Google Scholar 

  • Dillon N (2004) Heterochromatin structure and function. Biol Cell 96:631–637

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Greshock J, Naylor TL, Margolin A, Diskin S, Cleaver SH, Futreal PA, deJong PJ, Zhao S, Liebman M, Weber BL (2004) 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res 14:179–187

    Article  PubMed  CAS  Google Scholar 

  • Hoskins R, Smith CD, Carlson JW, et al. (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3:RESEARCH0085

    Article  PubMed  Google Scholar 

  • Hudson R (1990) Gene genealogies and the coalescent process. Oxf Surv Evol Biol 7:1–42

    Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    PubMed  CAS  Google Scholar 

  • Inoue K, Dewar K, Katsanis N, Reiter LT, Lander ES, Devon KL, Wyman DW, Lupski JR, Birren B (2001) The 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes. Genome Res 11:1018–1033

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Begun DJ (2005) Parallel evolution of chimeric fusion genes. Proc Natl Acad Sci USA 102:11373–11378

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Custer AW, Begun DJ (2005) Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D. madeirensis and D. guanche. Genetics 170:207–219

    Article  PubMed  CAS  Google Scholar 

  • Kreitman M, Hudson RR (1991) Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics 127:565–582

    PubMed  CAS  Google Scholar 

  • Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L (1988) Historical biogeography of the Drosophila melanogaster species subgroup. Evol Biol 22:159–225

    Google Scholar 

  • Lachaise D, Harry M, Solignac M, Lemeunier F, Benassi V, Cariou ML (2000) Evolutionary novelties in island: Drosophila santomea, a new melanogaster sister species from Sao Tome. Proc R Soc Lond Ser B 267:1487–1495

    Article  CAS  Google Scholar 

  • Liu Y, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  • Long M, Langley CH (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260:91–95

    Article  PubMed  CAS  Google Scholar 

  • Loppin B, Lepetit D, Dorus S, Couble P, Karr TL (2005) Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability. Curr Biol 15:87–93

    Article  PubMed  CAS  Google Scholar 

  • Makalowski W (2003) Genomics. Not junk after all. Science 300:1246–1247

    CAS  Google Scholar 

  • Marchant G, Holm DG (1988) Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120:519–532

    CAS  PubMed  Google Scholar 

  • McVean GAT, Charlesworth B (2000) The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics 155:929–944

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nordborg M, Charlesworth B, Charlesworth D (1996) The effect of recombination on background selection. Genet Res 67:159–174

    Article  PubMed  CAS  Google Scholar 

  • Nurminsky D, Nurminskaya MV, De Aguiar D, Hartl DL (1998) Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396:572–575

    Article  PubMed  CAS  Google Scholar 

  • Ohler U, Liao G, Niemann H, Rubin GM (2002) Computational analysis of core promoters in the Drosophila genome. Genome Biol 3:research0087.1-0087.12

    Article  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Petrov D (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  PubMed  CAS  Google Scholar 

  • Petrov D, Lozovskaya ER, Hartl DL (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384:346–349

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37 (Suppl):S11–S17

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Segraves R., Sudar D, et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  PubMed  CAS  Google Scholar 

  • Powell J (1997) Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press, New York

    Google Scholar 

  • Reese M (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Gullaud M, Blandin G, Aguadé M (2001) DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics 158:1147–1155

    PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Rubin G, Yandell MD, Wortman JR, et al. (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Schulze S, McAllister B, Sinclair D, Fitzpatrick K, Marchetti M, Pimpinelli S, Honda B (2006) Heterochromatic genes in Drosophila: A Comparative analysis of two genes. Genetics 173:1433–1445

    Article  PubMed  CAS  Google Scholar 

  • Solidar A, Paschall JE, Malcom CM, Wyckoff GJ (2004) The SPEED toolkit: a resource for evolutionary analysis in human genetic studies. Am Soc Hum Gen Annu Meet, Toronto, Ontario, Canada, October

    Google Scholar 

  • Swofford D (2002) PAUP: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tajima F (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wakimoto B, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125:141–154

    PubMed  CAS  Google Scholar 

  • Wang W, Brunet FG, Nero E, Long M (2002) Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA 99:4448–4453

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Thornton K, Emerson JJ, Long M (2004a) Nucleotide variation and recombination along the fourth chromosome in Drosophila simulans. Genetics 166:1783–1794

    Article  CAS  Google Scholar 

  • Wang W, Yu H, Long M (2004b) Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species. Nat Genet 36:523–527

    Article  CAS  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model-based background adjustment for oligonucleotide expression arrays. Johns Hopkins Univ Dept Biostat Working Papers 1:1–26

    Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    PubMed  CAS  Google Scholar 

  • Yasuhara J, DeCrease CH, Wakimoto BT. (2005) Evolution of heterochromatic genes of Drosophila. Proc Natl Acad Sci USA 102:10958–10963

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Charlesworth B (2000) A selective sweep associated with a recent gene transposition in Drosophila miranda. Genetics 156:1753–1763

    PubMed  CAS  Google Scholar 

  • Zhang J, Dean AM, Brunet F, Long M (2004) Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci USA 101:16246–16250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank a number of people (Chung-I Wu, Jerry Coyne, Peter Andolfatto, and Eviatar Nevo) for provision of fly strains; Xinmin Li for performance of the microarray hybridization; members of the Long laboratory for valuable discussions and inputs, particularly, J. J. Emerson and Ying Chen for data analyses and Janice Spofford and Roman Arguello for critical reading of the manuscript; Gerald Wyckoff for discussion about the evolution of the fibronectin gene; and two anonymous reviewers for their suggestions, especially for the interpretation of the detected biased spectrum of polymorphisms. This work was supported by NIH and NSF grants to M.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manyuan Long.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, C., Long, M. A New Retroposed Gene in Drosophila Heterochromatin Detected by Microarray-Based Comparative Genomic Hybridization. J Mol Evol 64, 272–283 (2007). https://doi.org/10.1007/s00239-006-0169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0169-9

Keywords

Navigation