Skip to main content

Advertisement

Log in

Retrotransposons and Tandem Repeat Sequences in the Nuclear Genomes of Cryptomonad Algae

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The cryptomonads are an enigmatic group of unicellular eukaryotic algae that possess two nuclear genomes, having acquired photosynthesis by the uptake and retention of a eukaryotic algal endosymbiont. The endosymbiont nuclear genome, or nucleomorph, of the cryptomonad Guillardia theta has been completely sequenced: at only 551 kilobases (kb) and with a gene density of ∼1 gene/kb, it is a model of compaction. In contrast, very little is known about the structure and composition of the cryptomonad host nuclear genome. Here we present the results of two small-scale sequencing surveys of fosmid clone libraries from two distantly related cryptomonads, Rhodomonas salina CCMP1319 and Cryptomonas paramecium CCAP977/2A, corresponding to ∼150 and ∼235 kb of sequence, respectively. Very few of the random end sequences determined in this study show similarity to known genes in other eukaryotes, underscoring the considerable evolutionary distance between the cryptomonads and other eukaryotes whose nuclear genomes have been completely sequenced. Using a combination of fosmid clone end-sequencing, Southern hybridizations, and PCR, we demonstrate that Ty3-gypsy long-terminal repeat (LTR) retrotransposons and tandem repeat sequences are a prominent feature of the nuclear genomes of both organisms. The complete sequence of a 30.9-kb genomic fragment from R. salina was found to contain a full-length Ty3-gypsy element with near-identical LTRs and a chromodomain, a protein module suggested to mediate the site-specific integration of the retrotransposon. The discovery of chromodomain-containing retroelements in cryptomonads further expands the known distribution of the so-called chromoviruses across the tree of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2005) Jumping genes and shrinking genomes—probing the evolution of eukaryotic photosynthesis using genomics. IUBMB Life 57:539–547

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a green movement in eukaryotic evolution. Trends Genet 18:577–584

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Keeling PJ (2005) On the origin and evolution of plastids. In: Saap J (ed) Microbial phylogeny and evolution. Oxford University Press, New York, pp 238–260

    Google Scholar 

  • Archibald JM, Cavalier-Smith T, Maier U, Douglas S (2001) Molecular chaperones encoded by a reduced nucleus—the cryptomonad nucleomorph. J Mol Evol 52:490–501

    PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid–targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Beaton M, Cavalier-Smith T (1999) Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes. Proc R Soc Lond B 266:2053–2059

    Article  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  Google Scholar 

  • Bodyl A (2005) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719

    Article  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    CAS  PubMed  Google Scholar 

  • Deane JA, Fraunholz M, Su V, Maier UG, Martin W, Durnford DG, McFadden GI (2000) Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 151:239–252

    Article  PubMed  CAS  Google Scholar 

  • Dear S, Staden R (1991) A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res 19:3907–3911

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154(Suppl):S164–S177

    Article  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome from the cryptomonad alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L, Wu X, Reith M, Cavalier-Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Dusan K, (2005) A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene 347:161–173

    Article  CAS  Google Scholar 

  • Eissenberg JC (2001) Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 275:19–29

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005a) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005b) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  CAS  Google Scholar 

  • Elias MC, Vargas NS, Zingales B, Schenkman S (2003) Organization of satellite DNA in the genome of Trypanosoma cruzi. Mol Biochem Parasitol 129:1–9

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci 312:227–42

    PubMed  CAS  Google Scholar 

  • Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF (2003) Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA 9:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M, Wilson RJ, Sato S, Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B, Angiuoli SV, Creasy TH, Lu C, Suh B, Silva JC, Utterback TR, Feldblyum TV, Pertea M, Allen J, Nierman WC, Taracha EL, Salzberg SL, White OR, Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V (2005) Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309:134–137

    Article  PubMed  CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    PubMed  CAS  Google Scholar 

  • Gilson PR (2001) Nucleomorph genomes: much ado about practically nothing. Genome Biol 2:REVIEWS1022

    Article  PubMed  CAS  Google Scholar 

  • Gilson PR, McFadden GI (2002) Jam packed genomes––a preliminary, comparative analysis of nucleomorphs. Genetica 115:13–28

    Article  PubMed  CAS  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) From the cover: complete nucleotide sequence of the chlorarachniophyte nucleomorph: Nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9571

    Article  PubMed  CAS  Google Scholar 

  • Gorinsek B, Gubensek F, Kordis D (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–146

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hancock JM (2002) Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects. Genetica 115:93–103

    Article  PubMed  CAS  Google Scholar 

  • Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55:487–496

    Article  PubMed  CAS  Google Scholar 

  • Hauth AM, Maier UG, Lang BF, Burger G (2005) The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids Res 33:4433–4442

    Article  PubMed  CAS  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    Article  PubMed  Google Scholar 

  • Hoef-Emden K, (2005) Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons. J Mol Evol 60:183–195

    Article  PubMed  CAS  Google Scholar 

  • Hoef-Emden K, Marin B, Melkonian M (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55:161–179

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J Mol Evol 45:682–687

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Green BR, Cavalier-Smith T (1999) Diversification of a chimaeric algal group, the chlorarachniophytes: phylogeny of nuclear and nucleomorph small-subunit rRNA genes. Mol Biol Evol 16:321–331

    CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kordis D (2005) A genomic perspective on the chromodomain-containing retrotransposons: chromoviruses. Gene 347:161–173

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, Khan H, MacKinnon M, Fong A, Theophilou S, Archibald JM (2006) Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Mol Biol Evol 23:856–865

    Article  PubMed  CAS  Google Scholar 

  • Levin HL (1995) A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol 15:3310–3317

    PubMed  CAS  Google Scholar 

  • Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) The genomes on line database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34:D332–334

    Article  PubMed  CAS  Google Scholar 

  • Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5190

    PubMed  CAS  Google Scholar 

  • Marín I, Lloréns C (2000) Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17:1040–1049

    PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin IT, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson PR, Waller RF (1995) Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. Arch Protistenkd 145:231–239

    Google Scholar 

  • McGrath CL, Katz LA (2004) Genome diversity in microbial eukaryotes. Trends Ecol Evol 19:32–38

    Article  PubMed  Google Scholar 

  • Nene V, Morzaria S, Bishop R (1998) Organisation and informational content of the Theileria parva genome. Mol Biochem Parasitol 95:1–8

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodunnit? J Phycol 39:4–11

    Article  CAS  Google Scholar 

  • Rensing SA, Goddemeier M, Hofmann CJ, Maier UG (1994) The presence of a nucleomorph hsp70 gene is a common feature of Cryptophyta and Chlorarachniophyta. Curr Genet 26:451–455

    Article  PubMed  CAS  Google Scholar 

  • Requena JM, Lopez MC, Alonso C (1996) Genomic repetitive DNA elements of Trypanosoma cruzi. Parasitol Today 12:279–283

    Article  PubMed  CAS  Google Scholar 

  • Sloof P, Bos JL, Konings AF, Menke HH, Borst P, Gutteridge WE, Leon W (1983) Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. J Mol Biol 167:1–21

    Article  PubMed  CAS  Google Scholar 

  • Stover NA, Krieger CJ, Binkley G, Dong Q, Fisk DG, Nash R, Sethuraman A, Weng S, Cherry JM (2006) Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res 34:D500–D503

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Van der Auwera G, Hofmann CJB, De Rijk P, De Wachter R (1998) The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph. Mol Phylogenet Evol 10:333–342

    Article  PubMed  Google Scholar 

  • Wickstead B, Ersfeld K, Gull K (2003) Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 67:360–375

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Zagulski M, Nowak JK, Le Mouel A, Nowacki M, Migdalski A, Gromadka R, Noel B, Blanc I, Dessen P, Wincker P, Keller AM, Cohen J, Meyer E, Sperling L (2004) High coding density on the largest Paramecium tetraurelia somatic chromosome. Curr Biol 14:1397–1404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Iñaki Ruiz-Trillo and two anonymous reviewers for their helpful comments on the manuscript, Ignacio Marín for kindly providing a protein alignment of Ty3-gypsy reverse transcriptase domains, and Jessica Leigh for assistance with phylogenetic analysis. This work was supported by Genome Atlantic and an NSERC discovery grant (283335-2004) awarded to J.M.A. J.M.A. is a Scholar of the Canadian Institute for Advanced Research, Program in Evolutionary Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hameed Khan.

Additional information

[Reviewing Editor: Dr. Debashish Bhattacharya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, H., Kozera, C., Curtis, B.A. et al. Retrotransposons and Tandem Repeat Sequences in the Nuclear Genomes of Cryptomonad Algae. J Mol Evol 64, 223–236 (2007). https://doi.org/10.1007/s00239-006-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0088-9

Keywords

Navigation