Skip to main content
Log in

GC Content Evolution of the Human and Mouse Genomes: Insights from the Study of Processed Pseudogenes in Regions of Different Recombination Rates

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Processed pseudogenes are generated by reverse transcription of a functional gene. They are generally nonfunctional after their insertion and, as a consequence, are no longer subjected to the selective constraints associated with functional genes. Because of this property they can be used as neutral markers in molecular evolution. In this work, we investigated the relationship between the evolution of GC content in recently inserted processed pseudogenes and the local recombination pattern in two mammalian genomes (human and mouse). We confirmed, using original markers, that recombination drives GC content in the human genome and we demonstrated that this is also true for the mouse genome despite lower recombination rates. Finally, we discussed the consequences on isochores evolution and the contrast between the human and the mouse pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andolfatto P, Wall JD (2003) Linkage disequilibrium patterns across a recombination gradient in African Drosophila melanogaster. Genetics 165:1289–1305

    PubMed  CAS  Google Scholar 

  • Arndt PF, Burge CB, Hwa T (2003a) DNA sequence evolution with neighbor-dependent mutation. J Comput Biol 10:313–322

    Article  CAS  Google Scholar 

  • Arndt PF, Petrov DA, Hwa T (2003b) Distinct changes of genomic biases in nucleotide substitution at the time of Mammalian radiation. Mol Biol Evol 20:1887–1896

    Article  CAS  Google Scholar 

  • Belle EM, Duret L, Galtier N, Eyre-Walker A (2004) The decline of isochores in mammals: an assessment of the GC content variation along the mammalian phylogeny. J Mol Evol 58:653–660

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2000) The compositional evolution of vertebrate genomes. Gene 259:31–43

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    PubMed  CAS  Google Scholar 

  • Bill CA, Duran WA, Miselis NR, Nickoloff JA (1998) Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 149:1935–1943

    PubMed  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    PubMed  CAS  Google Scholar 

  • Birdsell JA (2002) Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19:1181–1197

    PubMed  CAS  Google Scholar 

  • Blake JA, Richardson JE, Bult CJ, Kadin JA, Eppig JT (2003) MGD: the Mouse Genome Database. Nucleic Acids Res 31:193–195

    Article  PubMed  CAS  Google Scholar 

  • Brown TC, Jiricny J (1988) Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 26:705–711

    Article  Google Scholar 

  • Casane D, Boissinot S, Chang BH, Shimmin LC, Li WH (1997) Mutation pattern variation among regions of the primate genome. J Mol Evol 45:216–226

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A (1991) A graphical representation of genetic and physical maps: the Marey map. Genomics, 11:219–222

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1994) Genetic recombination. Patterns in the genome. Curr Biol 4:182–184

    CAS  Google Scholar 

  • Clay O, Douady CJ, Carels N, Hughes S, Bucciarelli G, Bernardi G (2003) Using analytical ultracentrifugation to study compositional variation in vertebrate genomes. Eur Biophys J 32:418–426

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor TJ (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Mouchiroud D, Gouy M (1994) HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Res 25:2360–2365

    Google Scholar 

  • Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N (2002) Vanishing GC-rich isochores in mammalian genomes. Genetics 162:1837–1847

    PubMed  CAS  Google Scholar 

  • Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1993) Recombination and mammalian genome evolution. Proc R Soc Lond B Biol Sci 252:237–243

    CAS  Google Scholar 

  • Eyre-Walker A (1999) Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152:675–683

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Hurst LD (2001) The evolution of isochores. Nat Rev Genet 2:549–555

    Article  PubMed  CAS  Google Scholar 

  • Filatov DA, Gerrard DT (2003) High mutation rates in human and ape pseudoautosomal genes. Gene 23:67–77

    Article  Google Scholar 

  • Francino MP, Ochman H (1999) Isochores result from mutation not selection. Nature 400:30–31

    Article  PubMed  CAS  Google Scholar 

  • Fullerton SM, Bernardo Carvalho A, Clark AG (1999) Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol 18:1139–1142

    Google Scholar 

  • Galtier N (2003) Gene conversion drives GC content evolution in mammalian histones. Trends Genet 19:65–68

    Article  PubMed  CAS  Google Scholar 

  • Galtier N (2004) Recombination, GC-content and the human pseudoautosomal boundary paradox. Trends Genet 20:347–349

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  • Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159:907–911

    PubMed  CAS  Google Scholar 

  • Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160:595–608

    PubMed  CAS  Google Scholar 

  • Huang SW, Friedman R, Yu N, Yu A, Li WH. (2005) How strong is the mutagenicity of recombination in mammals? Mol Biol Evol 22:1157

    CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA,. Haussler D, Jacob HJ (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Neumann R (2002) Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat Genet 3:267–271

    Article  Google Scholar 

  • Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Lercher MJ, Eyre-Walker A (2005) Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3:e42 (Epub Jan 25)

    Article  PubMed  Google Scholar 

  • Khelifi A, Duret L, Mouchiroud D (2005) HOPPSIGEN: a database of human and mouse processed pseudogenes. Nucleic Acids Res 33 (Database Issue):D59–D66

    PubMed  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  CAS  Google Scholar 

  • Kudla G, Helwak A, Lipinski L (2004) Gene conversion and GC-content evolution in mammalian Hsp70. Mol Biol Evol 21:1438–1444

    Article  PubMed  CAS  Google Scholar 

  • Lamb BC (1984) The properties of meiotic gene conversion important in its effects on evolution. Heredity 53:113–138

    PubMed  Google Scholar 

  • Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18: 337–340

    Article  PubMed  CAS  Google Scholar 

  • Marais G (2003) Biased gene conversion: implications for genome and sex evolution. Trends Genet 19:330–338

    Article  PubMed  CAS  Google Scholar 

  • Matassi G, Sharp PM, Gautier C (1999) Chromosomal location effects on gene sequence evolution in mammals. Curr Biol 9:786–791

    Article  PubMed  CAS  Google Scholar 

  • McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P (2004) Fine-scale structure of recombination rate variation in the human genome. Science 23:581–584

    Article  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990

    Article  PubMed  CAS  Google Scholar 

  • Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114

    Article  PubMed  CAS  Google Scholar 

  • Montoya-Burgos JI, Boursot P, Galtier N (2003) Recombination explains isochores in mammalian genomes. Trends Genet 19:128–130

    Article  PubMed  CAS  Google Scholar 

  • Mouchiroud D, Bernardi G (1993) Compositional properties of coding sequences and mammalian phylogeny. J Mol Evol 37:109–116

    Article  PubMed  CAS  Google Scholar 

  • Mouchiroud D, Gautier C (1988) High codon-usage changes in mammalian genes. Mol Biol Evol 5:192–194

    PubMed  CAS  Google Scholar 

  • Mouchiroud D, Gautier C, Bernardi G (1988) The compositional distribution of coding sequences and DNA molecules in humans and murids. J Mol Evol 27:311–320

    Article  PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  • Nagylaki T (1983) Evolution of a large population under gene conversion. Proc Natl Acad Sci USA 80:5941–5945

    Article  PubMed  CAS  Google Scholar 

  • Padhukasahasram B, Marjoram P, Nordborg M (2004) Estimating the rate of gene conversion on human chromosome 21. Am J Hum Genet 75:386–397

    Article  PubMed  CAS  Google Scholar 

  • Pavlicek A, Paces J, Zika R, Hejnar J (2002) Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene 300:189–194

    Article  PubMed  CAS  Google Scholar 

  • Perrière G, Combet C, Penel S, Blanchet C, Thioulouse J, Geourjon C, Grassot J, Charavay C, Gouy G, Duret L, Deleage G (2003) Integrated databanks access and sequence/structure analysis services at the PBIL. Nucleic Acids Res 31:3393–3399

    Article  PubMed  Google Scholar 

  • Ptak SE, Roeder AD, Stephens M, Gilad Y, Paabo S, Przeworski M (2004) Absence of the TAP2 human recombination hotspot in chimpanzees. PLoS Biol 2:849–855

    Article  CAS  Google Scholar 

  • Smith NG, Webster MT, Ellegren H (2002) Deterministic mutation rate variation in the human genome. Genome Res 12:1350–1356

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Kumar S (2003) Neutral substitutions occur at a faster rate in exons than in noncoding DNA in primate genomes. Genome Res 13:838–844

    Article  PubMed  CAS  Google Scholar 

  • Takahata N, Satta Y, Klein J (1995) Divergence time and population size in the lineage leading to modern humans. Theor Popul Biol 48:198–221

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • True JR, Mercer JM, Laurie CC (1996) Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142:507–523

    PubMed  CAS  Google Scholar 

  • Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19:53–272

    Article  Google Scholar 

  • Webster MT, Smith NG, Ellegren H (2003) Compositional evolution of noncoding DNA in the human and chimpanzee genomes. Mol Biol Evol 20:278–286

    Article  PubMed  CAS  Google Scholar 

  • Webster MT, Smith NG, Hultin-Rosenberg L, Arndt PF, Ellegren H (2005) Male-driven biased gene conversion governs the evolution of base composition in human Alu repeats. Mol Biol Evol 22:1468–1474

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1993) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  Google Scholar 

  • Yi S, Summers TJ, Pearson NM, Li WH (2004) Recombination has little effect on the rate of sequence divergence in pseudoautosomal boundary 1 among humans and great apes. Genome Res 14:37–43

    Article  PubMed  CAS  Google Scholar 

  • Yu N, Jensen-Seaman MI, Chemnick L, Kidd JR, Deinard AS, Ryder O, Kidd KK, Li WH (2003) Low nucleotide diversity in chimpanzees and bonobos. Genetics 164:1511–1518

    PubMed  CAS  Google Scholar 

  • Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 15:5338–5348

    Article  Google Scholar 

  • Zhao Z, Jin L, Fu YX, et al. (2000) Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. Proc Natl Acad Sci USA 97:11354–113548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks go to Tim Greenland and Gabriel Marais for discussions and comments on the manuscript. We thank the Centre de Calcul de l’IN2P3 for providing computer resources. This work was supported by the Centre National de la Recherche Scientique and the Claude Bernard University-Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Khelifi.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khelifi, A., Meunier, J., Duret, L. et al. GC Content Evolution of the Human and Mouse Genomes: Insights from the Study of Processed Pseudogenes in Regions of Different Recombination Rates. J Mol Evol 62, 745–752 (2006). https://doi.org/10.1007/s00239-005-0186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0186-0

Keywords

Navigation