Skip to main content
Log in

A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex.

Methods

Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model.

Results

The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices.

Conclusion

fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kringelbach ML, de Araujo IE, Rolls ET (2004) Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage 21:781–788

    Article  PubMed  Google Scholar 

  2. Lee BC, Hwang SH, Rison R, Chang GY (1998) Central pathway of taste: clinical and MRI study. Eur Neurol 39:200–203

    Article  PubMed  CAS  Google Scholar 

  3. Penfield W, Faulk ME Jr (1955) The insula; further observations on its function. Brain 78:445–470

    Article  PubMed  CAS  Google Scholar 

  4. Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, Petrides M (1999) Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 10:7–14

    Article  PubMed  CAS  Google Scholar 

  5. Faurion A, Cerf B, Le Bihan D, Pillias AM (1998) fMRI study of taste cortical areas in humans. Ann N Y Acad Sci 855:535–545

    Article  PubMed  CAS  Google Scholar 

  6. Frank GK, Kaye WH, Carter CS, Brooks S, May C, Fissell K, Stenger VA (2003) The evaluation of brain activity in response to taste stimuli – a pilot study and method for central taste activation as assessed by event-related fMRI. J Neurosci Methods 131:99–105

    Article  PubMed  Google Scholar 

  7. Cerf-Ducastel B, Van de Moortele PF, MacLeod P, Le Bihan D, Faurion A (2001) Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study. Chem Senses 26:371–383

    Article  PubMed  CAS  Google Scholar 

  8. Norgren R (1990) Gustatory system. In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 845–861

    Google Scholar 

  9. Zald DH, Hagen MC, Pardo JV (2002) Neural correlates of tasting concentrated quinine and sugar solutions. J Neurophysiol 87:1068–1075

    PubMed  Google Scholar 

  10. Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903

    Article  PubMed  Google Scholar 

  11. de Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N (2003) Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 18:2059–2068

    Article  PubMed  Google Scholar 

  12. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826

    Article  PubMed  CAS  Google Scholar 

  13. Rolls ET (1999) The brain and emotion. Oxford University Press, Oxford

    Google Scholar 

  14. Ogawa H (1994) Gustatory cortex of primates: anatomy and physiology. Neurosci Res 20:1–13

    Article  PubMed  CAS  Google Scholar 

  15. Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14:5437–5452

    PubMed  CAS  Google Scholar 

  16. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P (2002) Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866

    Article  PubMed  Google Scholar 

  17. Peeters RR, Sunaert S, Smits M, Van Hecke P (2004) Optimization of 3D EPI SENSE techniques for fMRI of highly inhomogeneous areas. In: Proceedings of the International Society for Magnetic Resonance in Medicine 12th Scientific Meeting, Kyoto, p 1028

  18. Calder AJ, Lawrence AD, Young AW (2001) Neuropsychology of fear and loathing. Nat Rev Neurosci 2:352–363

    Article  PubMed  CAS  Google Scholar 

  19. Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, Newell FN, Emslie H (2000) A neural basis for general intelligence. Science 289:457–460

    Article  PubMed  CAS  Google Scholar 

  20. De Panfilis C, Schwarzbauer C (2005) Positive or negative blips? The effect of phase encoding scheme on susceptibility-induced signal losses in EPI. Neuroimage 25:112–121

    Article  PubMed  Google Scholar 

  21. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441

    Article  PubMed  CAS  Google Scholar 

  22. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    Article  PubMed  CAS  Google Scholar 

  23. Gu H, Feng H, Zhan W, Xu S, Silbersweig DA, Stern E, Yang Y (2002) Single-shot interleaved z-shim EPI with optimized compensation for signal losses due to susceptibility-induced field inhomogeneity at 3 T. Neuroimage 17:1358–1364

    Article  PubMed  Google Scholar 

  24. Li Z, Wu G, Zhao X, Luo F, Li SJ (2002) Multiecho segmented EPI with z-shimmed background gradient compensation (MESBAC) pulse sequence for fMRI. Magn Reson Med 48:312–321

    Article  PubMed  Google Scholar 

  25. Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage 15:120–135

    Article  PubMed  CAS  Google Scholar 

  26. Posse S, Shen Z, Kiselev V, Kemna LJ (2003) Single-shot T(2)* mapping with 3D compensation of local susceptibility gradients in multiple regions. Neuroimage 18:390–400

    Article  PubMed  Google Scholar 

  27. Glover GH, Law CS (2001) Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46:515–522

    Article  PubMed  CAS  Google Scholar 

  28. Preston AR, Thomason ME, Ochsner KN, Cooper JC, Glover GH (2004) Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. Neuroimage 21:291–301

    Article  PubMed  Google Scholar 

  29. Cordes D, Turski PA, Sorenson JA (2000) Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications. Magn Reson Imaging 18:1055–1068

    Article  PubMed  CAS  Google Scholar 

  30. Hsu JJ, Glover GH (2005) Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils. Magn Reson Med 53:243–248

    Article  PubMed  Google Scholar 

  31. Cusack R, Russell B, Cox SM, De Panfilis C, Schwarzbauer C, Ansorge R (2005) An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI. Neuroimage 24:82–91

    Article  PubMed  Google Scholar 

  32. Wilson JL, Jezzard P (2003) Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magn Reson Med 50:1089–1094

    Article  PubMed  Google Scholar 

  33. Osterbauer RA, Wilson JL, Calvert GA, Jezzard P (2006) Physical and physiological consequences of passive intra-oral shimming. Neuroimage 29:245–253

    Article  PubMed  Google Scholar 

  34. Wilson JL, Jenkinson M, de Araujo I, Kringelbach ML, Rolls ET, Jezzard P (2002) Fast, fully automated global and local magnetic field optimization for fMRI of the human brain. Neuroimage 17:967–976

    Article  PubMed  Google Scholar 

  35. Preibisch C, Pilatus U, Bunke J, Hoogenraad F, Zanella F, Lanfermann H (2003) Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI). Neuroimage 19:412–421

    Article  PubMed  Google Scholar 

  36. Wang Y (2000) Description of parallel imaging in MRI using multiple coils. Magn Reson Med 44:495–499

    Article  PubMed  CAS  Google Scholar 

  37. De Zwart JA, Ledden PJ, Van Gelderen P, Bodurka J, Chu R, Duyn JH (2004) Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 51:22–26

    Article  PubMed  Google Scholar 

  38. Schmidt CF, Degonda N, Luechinger R, Henke K, Boesiger P (2005) Sensitivity-encoded (SENSE) echo planar fMRI at 3T in the medial temporal lobe. Neuroimage 25:625–641

    Article  PubMed  Google Scholar 

  39. Weiger M, Pruessmann KP, Boesiger P (2002) 2D SENSE for faster 3D MRI. Magma 14:10–19

    Article  PubMed  Google Scholar 

  40. McCarthy G, Allison T, Spencer DD (1993) Localization of the face area of human sensorimotor cortex by intracranial recording of somatosensory evoked potentials. J Neurosurg 79:874–884

    Article  PubMed  CAS  Google Scholar 

  41. Iannetti GD, Porro CA, Pantano P, Romanelli PL, Galeotti F, Cruccu G (2003) Representation of different trigeminal divisions within the primary and secondary human somatosensory cortex. Neuroimage 19:906–912

    Article  PubMed  CAS  Google Scholar 

  42. Cerf-Ducastel B, Murphy C (2004) Improvement of fMRI data processing of olfactory responses with a perception-based template. Neuroimage 22:603–610

    Article  PubMed  Google Scholar 

  43. Faurion A, Cerf B, Van De Moortele PF, Lobel E, MacLeod P, Le Bihan D (1999) Human taste cortical areas studied with functional magnetic resonance imaging: evidence of functional lateralization related to handedness. Neurosci Lett 277:189–192

    Article  PubMed  CAS  Google Scholar 

  44. Cerf B, Lebihan D, Van de Moortele PF, MacLeod P, Faurion A (1998) Functional lateralization of human gustatory cortex related to handedness disclosed by fMRI study. Ann N Y Acad Sci 855:575–578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible with funding from a European Union Marie-Curie Fellowship and from “Fonds voor Wetenschappelijk Onderzoek (FWO)-Flanders Wetenschappelijke Onderzoeksgemeenschap (WOG) on Advanced Nuclear Magnetic Resonance (NMR)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Smits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smits, M., Peeters, R.R., van Hecke, P. et al. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants. Neuroradiology 49, 61–71 (2007). https://doi.org/10.1007/s00234-006-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0160-6

Keywords

Navigation