Skip to main content
Log in

Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aroian R, Van Der Goot FG (2007) Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10:57–61

    Article  CAS  PubMed  Google Scholar 

  • Bayley H, Jayasinghe L (2004) Functional engineered channels and pores (Review). Mol Membr Biol 21:209–220

    Article  CAS  PubMed  Google Scholar 

  • Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105:15370–15375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1984) Mechanism of complement cytolysis and the concept of channel-forming proteins. Philos Trans R Soc Lond B Biol Sci 306:311–324

    Article  CAS  PubMed  Google Scholar 

  • Cassidy SK, O’riordan MX (2013) More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel) 5:618–636

    Article  CAS  Google Scholar 

  • Cheley S, Gu LQ, Bayley H (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol 9:829–838

    Article  CAS  PubMed  Google Scholar 

  • Cheng HT, London E (2011) Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys J 100:2671–2678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu J, March PE, Lee R, Tillett D (2004) Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100 % efficiency in 4 h. Nucleic Acids Res 32:e174

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiu J, Tillett D, Dawes IW, March PE (2008) Site-directed, ligase-independent mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8 kb. J Microbiol Methods 73:195–198

    Article  CAS  PubMed  Google Scholar 

  • Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochim Biophys Acta 1818:1457–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darst SA, Ahlers M, Meller PH, Kubalek EW, Blankenburg R, Ribi HO, Ringsdorf H, Kornberg RD (1991) Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Biophys J 59:387–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fussle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T, Wellensiek HJ (1981) On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Cell Biol 91:83–94

    Article  CAS  PubMed  Google Scholar 

  • Giddings KS, Johnson AE, Tweten RK (2003) Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc Natl Acad Sci USA 100:11315–11320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koebnik R (1999) Structural and functional roles of the surface-exposed loops of the beta-barrel membrane protein OmpA from Escherichia coli. J Bacteriol 181:3688–3694

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Q, London E (2013) Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J Biol Chem 288:1340–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Q, London E (2014) The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O). J Biol Chem 289:5467–5478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Sekiya T, Okamura S, Nozawa Y, Hase J (1979) Ring formation of perfringolysin O as revealed by negative stain electron microscopy. Biochim Biophys Acta 558:307–313

    Article  CAS  PubMed  Google Scholar 

  • Moniatte M, Van Der Goot FG, Buckley JT, Pattus F, Van Dorsselaer A (1996) Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Lett 384:269–272

    Article  CAS  PubMed  Google Scholar 

  • Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Nelson LD, Johnson AE, London E (2008) How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH—insights into the origin of perfringolysin O-lipid raft interaction. J Biol Chem 283:4632–4642

    Article  CAS  PubMed  Google Scholar 

  • Nelson LD, Chiantia S, London E (2010) Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys J 99:3255–3263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Brien DK, Melville SB (2004) Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect Immun 72:5204–5215

    Article  PubMed Central  PubMed  Google Scholar 

  • Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88:91–142

    Article  CAS  PubMed  Google Scholar 

  • Pautsch A, Schulz GE (1998) Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol 5:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran R, Tweten RK, Johnson AE (2004) Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol 11:697–705

    Article  CAS  PubMed  Google Scholar 

  • Rosconi MP, Zhao G, London E (2004) Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5–7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry 43:9127–9139

    Article  CAS  PubMed  Google Scholar 

  • Rossjohn J, Feil SC, Mckinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  CAS  PubMed  Google Scholar 

  • Sato TK, Tweten RK, Johnson AE (2013) Disulfide-bond scanning reveals assembly state and beta-strand tilt angle of the PFO beta-barrel. Nat Chem Biol 9:383–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scherrer R, Gerhardt P (1971) Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol 107:718–735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmid B, Maveyraud L, Kromer M, Schulz GE (1998) Porin mutants with new channel properties. Protein Sci 7:1603–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317

    Article  CAS  PubMed  Google Scholar 

  • Sharpe JC, London E (1999) Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization. J Membr Biol 171:209–221

    Article  CAS  PubMed  Google Scholar 

  • Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299

    Article  CAS  PubMed  Google Scholar 

  • Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574

    Article  CAS  PubMed  Google Scholar 

  • Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39:10284–10293

    Article  CAS  PubMed  Google Scholar 

  • Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, Dekker N, Dijkstra BW (1999) Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401:717–721

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  • Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valeva A, Palmer M, Bhakdi S (1997) Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochemistry 36:13298–13304

    Article  CAS  PubMed  Google Scholar 

  • Walev I, Bhakdi SC, Hofmann F, Djonder N, Valeva A, Aktories K, Bhakdi S (2001) Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc Natl Acad Sci USA 98:3185–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, London E (2009) The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry 48:10446–10456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilmsen HU, Leonard KR, Tichelaar W, Buckley JT, Pattus F (1992) The aerolysin membrane channel is formed by heptamerization of the monomer. EMBO J 11:2457–2463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yannakopoulou K, Jicsinszky L, Aggelidou C, Mourtzis N, Robinson TM, Yohannes A, Nestorovich EM, Bezrukov SM, Karginov VA (2011) Symmetry requirements for effective blocking of pore-forming toxins: comparative study with alpha-, beta-, and gamma-cyclodextrin derivatives. Antimicrob Agents Chemother 55:3594–3597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. A. Heuck, (U. Mass. Amherst) for providing protocols to prepare BODIPY-labeled streptavidin. This work was supported by NSF Grant MCB 1019986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin London.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Wang, T., Li, H. et al. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. J Membrane Biol 248, 517–527 (2015). https://doi.org/10.1007/s00232-015-9798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9798-5

Keywords

Navigation