Skip to main content
Log in

Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Nutrient import across Gram-negative bacteria’s outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB–ExbD–TonB. Having purified the ExbB4–ExbD2 complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB4–ExbD2 complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB4–ExbD2 was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB4–ExbD2 complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB6–ExbD4, and propose a structural arrangement of its transmembrane α-helical domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitken A, Learmonth MP (2002) Protein determination by UV absorption. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana Press, Clifton, pp 3–6

    Chapter  Google Scholar 

  • Alexandrov AI, Mileni M, Chien EYT, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  CAS  Google Scholar 

  • Allaire M, Yang L (2011) Biomolecular solution X-ray scattering at the National Synchrotron Light Source. J Synchrotron Radiat 18:41–44

    Article  CAS  Google Scholar 

  • Arunmanee W, Harris JR, Lakey JH (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J Membr Biol. doi:10.1007/s00232-014-9640-5

    Article  CAS  Google Scholar 

  • Baker KR, Postle K (2013) Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway. J Bacteriol 195:2898–2911

    Article  CAS  Google Scholar 

  • Braun V, Gaisser S, Herrmann C, Kampfenkel K, Killmann H, Traub I (1996) Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity. J Bacteriol 178:2836–2845

    Article  CAS  Google Scholar 

  • Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF (2003) Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43:35–45

    Article  Google Scholar 

  • Cascales E, Lloubès R, Sturgis JN (2001) The TolQ–TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA–MotB. Mol Microbiol 42:795–807

    Article  CAS  Google Scholar 

  • Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol (submitted)

  • Chen JZ, Grigorieff N (2007) SIGNATURE: a single-particle selection system for molecular electron microscopy. J Struct Biol 157:168–173

    Article  CAS  Google Scholar 

  • Chu BH, Peacock RS, Vogel H (2007) Bioinformatic analysis of the TonB protein family. Biometals 20:467–483

    Article  CAS  Google Scholar 

  • Cölfen H, Antonietti M (2000) Field-flow fractionation techniques for polymer and colloid analysis. In: Schmidt M (ed) New developments in polymer analytics I. Springer, Berlin, pp 67–187

    Chapter  Google Scholar 

  • Dahmane T, Damian M, Mary S, Popot J-L, Banères J-L (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    Article  CAS  Google Scholar 

  • Ebel C (2011) Sedimentation velocity to characterize surfactants and solubilized membrane proteins. Methods 54:56–66

    Article  CAS  Google Scholar 

  • Giddings J (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465

    Article  CAS  Google Scholar 

  • Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Harpaz Y, Gerstein M, Chothia C (1994) Volume changes on protein folding. Structure 2:641–649

    Article  CAS  Google Scholar 

  • Hayashi Y, Matsui H, Takagi T, Takagi T (1989) Membrane protein molecular weight determined by low-angle laser light-scattering photometry coupled with high-performance gel chromatography. In: Sidney Fleischer BF (ed) Methods enzymol. Academic Press, Boston, pp 514–528

    Google Scholar 

  • Heller WT (2010) Small-angle neutron scattering and contrast variation: a powerful combination for studying biological structures. Acta Crystallogr D Biol Crystallogr 66:1213–1217

    Article  CAS  Google Scholar 

  • Heuberger EHML, Veenhoff LM, Duurkens RH, Friesen RHE, Poolman B (2002) Oligomeric state of membrane transport proteins analyzed with blue native electrophoresis and analytical ultracentrifugation. J Mol Biol 317:591–600

    Article  CAS  Google Scholar 

  • Higgs PI, Larsen RA, Postle K (2002) Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA. Mol Microbiol 44:271–281

    Article  CAS  Google Scholar 

  • Holloway PW (1973) A simple procedure for removal of triton X 100 from protein samples. Anal Biochem 53:304–308

    Article  CAS  Google Scholar 

  • Jana B, Manning M, Postle K (2011) Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains. J Bacteriol 193:5649–5657

    Article  CAS  Google Scholar 

  • Kampfenkel K, Braun V (1992) Membrane topology of the Escherichia coli ExbD protein. J Bacteriol 174:5485–5487

    Article  CAS  Google Scholar 

  • Kampfenkel K, Braun V (1993) Topology of the ExbB protein in the cytoplasmic membrane of Escherichia coli. J Biol Chem 268:6050–6057

    CAS  PubMed  Google Scholar 

  • Krewulak KD, Vogel HJ (2011) TonB or not TonB: is that the question? Biochem Cell Biol 89:87–97

    Article  CAS  Google Scholar 

  • Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  Google Scholar 

  • Liao M, Erhu C, Julius D, Cheng T (2014) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  Google Scholar 

  • Lynn GW, Heller W, Urban V, Wignall GD, Weiss K, Myles DAA (2006) Bio-SANS—A dedicated facility for neutron structural biology at Oak Ridge National Laboratory. Phys B Condens Matter 385–386(Part 2):880–882

    Article  Google Scholar 

  • Maslennikov I, Kefala G, Johnson C, Riek R, Choe S, Kwiatkowski W (2007) NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes. BMC Struct Biol 7:74

    Article  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  CAS  Google Scholar 

  • Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification—powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Article  CAS  Google Scholar 

  • Ollis AA, Postle K (2011) The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD–TonB heterodimers. J Bacteriol 193:6852–6863

    Article  CAS  Google Scholar 

  • Ollis AA, Kumar A, Postle K (2012) The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization. J Bacteriol 194:3069–3077

    Article  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  CAS  Google Scholar 

  • Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW (2006) Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:1399–1402

    Article  CAS  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleindschmidt JH, Kuhlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Pramanik A, Zhang F, Schwarz H, Schreiber F, Braun V (2010) ExbB protein in the cytoplasmic membrane of Escherichia coli forms a stable oligomer. Biochemistry 49:8721–8728

    Article  CAS  Google Scholar 

  • Pramanik A, Hauf W, Hoffmann J, Cernescu M, Brutschy B, Braun V (2011) Oligomeric structure of ExbB and ExbB-ExbD isolated from Escherichia coli as revealed by LILBID mass spectrometry. Biochemistry 50:8950–8956

    Article  CAS  Google Scholar 

  • Roy A, Nury H, Wiseman B, Sarwan J, Jault J-M, Ebel C (2013) Sedimentation velocity analytical ultracentrifugation in hydrogenated and deuterated solvents for the characterization of membrane proteins. In: Rapaport D, Herrmann JM (eds) Membrane biogenesis. Humana Press, New York, pp 219–251

    Chapter  Google Scholar 

  • Salvay A, Ebel C (2006) Analytical ultracentrifuge for the characterization of detergent in solution. In: Wandrey C, Cölfen H (eds) Analytical ultracentrifugation VIII. Springer, Berlin, pp 74–82

    Chapter  Google Scholar 

  • Scheres SHW, Núñez-Ramírez R, Sorzano COS, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3:977–990

    Article  CAS  Google Scholar 

  • Schneider CA (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675

    Article  CAS  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  CAS  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  CAS  Google Scholar 

  • Sverzhinsky A, Fabre L, Cottreau AL, Biot-Pelletier DMP, Khalil S, Bostina M, Rouiller I, Coulton JW (2014) Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB–ExbD of Escherichia coli. Structure 22:791–797

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    Article  CAS  Google Scholar 

  • Wagner M, Pietsch C, Tauhardt L, Schallon A, Schubert US (2014) Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering—a comparison with traditional techniques. J Chromatogr A 1325:195–203

    Article  CAS  Google Scholar 

  • Wasiak S, Legendre-Guillemin V, Puertollano R, Blondeau F, Girard M, de Heuvel E, Boismenu D, Bell AW, Bonifacino JS, McPherson PS (2002) Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J Cell Biol 158:855–862

    Article  CAS  Google Scholar 

  • Wille T, Wagner C, Mittelstädt W, Blank K, Sommer E, Malengo G, Döhler D, Lange A, Sourjik V, Hensel M, Gerlach RG (2013) SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion of Salmonella enterica. Cell Microbiol 16(2):161–178

    Article  Google Scholar 

  • Wittig I, Beckhaus T, Wumaier Z, Karas M, Schägger H (2010) Mass estimation of native proteins by blue native electrophoresis: Principles and practical hints. Mol Cell Proteomics 9:2149–2161

    Article  CAS  Google Scholar 

  • Yang L (2013) Using an in-vacuum CCD detector for simultaneous small- and wide-angle scattering at beamline X9. J Synchrotron Radiat 20:211–218

    Article  CAS  Google Scholar 

  • Yang Z, Fang J, Chittuluru J, Asturias FJ, Penczek PA (2012) Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20:237–247

    Article  CAS  Google Scholar 

  • Zhang XY-Z, Goemaere EL, Thomé R, Gavioli M, Cascales E, Lloubès R (2009) Mapping the interactions between Escherichia coli Tol subunits: Rotation of the TolR transmembrane helix. J Biol Chem 284:4275–4282

    Article  CAS  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  Google Scholar 

  • Zoonens M, Zito F, Martinez KL, Popot J-L (2014) Amphipols: a general introduction and some protocols. In: Mus-Veteau I (ed) Membrane protein production for structural analysis. Springer, New York

    Google Scholar 

Download references

Acknowledgments

Particular thanks are due to F. Giusti (UMR 7099, Paris) for synthesizing the deuterated and the fluorescent amphipols used in this project. This work was supported by an operating grant to J.W.C. from the Canadian Institutes of Health Research (CIHR reference number 200709MOP-178048-BMA-CFAA-11449). The Groupe d’étude des protéines membranaires (GÉPROM), supported by the Fonds de la recherche en santé du Québec (FRSQ), awarded a Projet Novateur to J.W.C. A.S. was awarded fellowships from the CREATE program, Cellular Dynamics of Macromolecular Complexes, Natural Sciences and Engineering Research Council (NSERC) of Canada; from GÉPROM; and from the F.C. Harrison and the Rozanis Funds, Department of Microbiology and Immunology, McGill University. Work in UMR 7099 was supported by the French Centre National de la Recherche Scientifique (CNRS), by Université Paris-7 Denis Diderot, and by grant “DYNAMO”, ANR-11-LABX-0011-01, from the French “Initiative d’Excellence” program. Canada Foundation for Innovation provided infrastructure for the Facility for Electron Microscope Research, McGill University; www.medicine.mcgill.ca/femr/home.html. We appreciate support from Isabelle Rouiller for EM studies. Tara Sprules, manager of the Quebec/Eastern Canada High Field NMR Facility,www.nmrlab.mcgill.ca, guided NMR experiments to quantitate detergent. Research at the Bio-SANS (Center for Structural Molecular Biology) was supported by the U.S. Department of Energy’s Office of Biological and Environmental Research. Research at Oak Ridge National Laboratory’s High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We appreciate the access to AF4 equipment in the laboratory of Françoise Winnik at the Université de Montréal. This work was facilitated by computing resources from CLUMEQ, under Compute/Calcul Canada. We appreciate laboratory support from Nathalie Croteau and suggestions on the manuscript by J. A. Kashul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Coulton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sverzhinsky, A., Qian, S., Yang, L. et al. Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. J Membrane Biol 247, 1005–1018 (2014). https://doi.org/10.1007/s00232-014-9678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9678-4

Keywords

Navigation