Skip to main content
Log in

Coregulation of Multiple Signaling Mechanisms in pp60v-Src-Induced Closure of Cx43 Gap Junction Channels

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Attenuation in gap junctional coupling has consistently been associated with induction of rapid or synchronous cell division in normal and pathological conditions. In the case of the v-src oncogene, gating of Cx43 gap junction channels has been linked to both direct phosphorylation of tyrosines (Y247 and 265) and phosphorylation of the serine targets of Erk1/2 (S255, 279 and 282) on the cytoplasmic C-terminal domain of Cx43. However, only the latter has been associated with acute, rather than chronic, gating of the channels immediately after v-src expression, a process that is mediated through a “ball-and-chain” mechanism. In this study we show that, while ERK1/2 is necessary for acute closure of gap junction channels, it is not sufficient. Rather, multiple pathways converge to regulate Cx43 coupling in response to expression of v-src, including parallel signaling through PKC and MEK1/2, with additional positive and negative regulatory effects mediated by PI3 kinase, distinguished by the involvement of Akt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Menko SS, Johnson RG, Sheppard JR, Sheridan JD (1981) Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus. J Cell Biol 91:573–578

    Article  PubMed  CAS  Google Scholar 

  • Barrett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408

    Article  Google Scholar 

  • Berthoud VM, Rook MB, Traub O, Hertzberg EL, Saez JC (1993) On the mechanisms of cell uncoupling induced by a tumor promoter phorbol ester in clone 9 cells, a rat liver epithelial cell line. Eur J Cell Biol 62:384–396

    PubMed  CAS  Google Scholar 

  • Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11:323–338

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  • Doble BW, Ping P, Fandrich RR, Cattini PA, Kardami E (2001) Protein kinase C-epsilon mediates phorbol ester-induced phosphorylation of connexin-43. Cell Commun Adhes 8:253–256

    Article  PubMed  CAS  Google Scholar 

  • Ek-Vitorin JF, Calero G, Morley GE, Coombs W, Taffet SM, Delmar M (1996) PH regulation of connexin43: molecular analysis of the gating particle. Biophys J 71:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE Jr (1999) Xenopus oocyte maturation: new lessons from a good egg. BioEssays 21:833–842

    Article  PubMed  Google Scholar 

  • Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11:1364–1368

    Article  PubMed  CAS  Google Scholar 

  • Goldberg GS, Lampe PD, Sheedy D, Stewart CC, Nicholson BJ, Naus CC (1998) Direct isolation and analysis of endogenous transjunctional ADP from Cx43 transfected C6 glioma cells. Exp Cell Res 239:82–92

    Article  PubMed  CAS  Google Scholar 

  • Homma N, Alvarado JL, Coombs W, Stergiopoulos K, Taffet SM, Lau AF, Delmar M (1998) A particle-receptor model for the insulin-induced closure of connexin43 channels. Circ Res 83:27–32

    Article  PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Ao P, Boynton AL (1998) Platelet-derived growth factor–induced disruption of gap junctional communication and phosphorylation of connexin43 involves protein kinase C and mitogen-activated protein kinase. J Cell Physiol 176:332–341

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Jagdale AB, Ao P, Boynton AL (1999a) Mitogen-activated protein kinase and phosphorylation of connexin43 are not sufficient for the disruption of gap junctional communication by platelet-derived growth factor and tetradecanoylphorbol acetate. J Cell Physiol 179:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Jagdale AB, Ao P, Kazlauskas A, Boynton AL (1999b) Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J Biol Chem 274:10489–10496

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Ito Y, Senga T, Hattori S, Matsuo S, Hamaguchi M (2006) v-Src requires Ras signaling for the suppression of gap junctional intercellular communication. Oncogene 25:2420–2424

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Hyodo T, Hasegawa H, Yuan H, Hamaguchi M, Senga T (2010) PI3K/Akt signaling is involved in the disruption of gap junctional communication caused by v-Src and TNF-α. Biochem Biophys Res Commun 400:230–235

    Article  PubMed  CAS  Google Scholar 

  • Kanemitsu MY, Lau AF (1993) Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-O-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase. Mol Biol Cell 4:837–848

    PubMed  CAS  Google Scholar 

  • Kanemitsu MY, Jiang W, Eckhart W (1998) Cdc2-mediated phosphorylation of the gap junction protein, connexin43, during mitosis. Cell Growth Differ 9:13–21

    PubMed  CAS  Google Scholar 

  • Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351(Pt 2):289–305

    Article  PubMed  CAS  Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  PubMed  CAS  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  PubMed  CAS  Google Scholar 

  • Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Langlois WJ, Sasaoka T, Saltiel AR, Olefsky JM (1995) Negative feedback regulation and desensitization of insulin- and epidermal growth factor–stimulated p21ras activation. J Biol Chem 270:25320–25323

    Article  PubMed  CAS  Google Scholar 

  • Lau AF, Kanemitsu MY, Kurata WE, Danesh S, Boynton AL (1992) Epidermal growth factor disrupts gap-junctional communication and induces phosphorylation of connexin43 on serine. Mol Biol Cell 3:865–874

    PubMed  CAS  Google Scholar 

  • Lin R, Warn-Cramer BJ, Kurata WE, Lau AF (2001) v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J Cell Biol 154:815–827

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR (1990) Cell-to-cell communication and the control of growth. Am Rev Respir Dis 142:S48–S53

    PubMed  CAS  Google Scholar 

  • Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt cross-talk. J Biol Chem 277:31099–31106

    Article  PubMed  CAS  Google Scholar 

  • Moreno AP, Saez JC, Fishman GI, Spray DC (1994) Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res 74:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Morley GE, Taffet SM, Delmar M (1996) Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Musil LS, Cunningham BA, Edelman GM, Goodenough DA (1990) Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol 111:2077–2088

    Article  PubMed  CAS  Google Scholar 

  • Park DJ, Wallick CJ, Martyn KD, Lau AF, Jin C, Warn-Cramer BJ (2007) Akt phosphorylates connexin43 on Ser373, a “mode-1” binding site for 14-3-3. Cell Commun Adhes 14:211–226

    Article  PubMed  CAS  Google Scholar 

  • Penuel E, Martin GS (1999) Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 10:1693–1703

    PubMed  CAS  Google Scholar 

  • Schonwasser DC, Marais RM, Marshall CJ, Parker PJ (1998) Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18:790–798

    PubMed  CAS  Google Scholar 

  • Shen Y, Khusial PR, Li X, Ichikawa H, Moreno AP, Goldberg GS (2007) SRC utilizes Cas to block gap junctional communication mediated by connexin43. J Biol Chem 282:18914–18921

    Article  PubMed  CAS  Google Scholar 

  • Solan JL, Lampe PD (2008) Connexin 43 in LA-25 cells with active v-src is phosphorylated on Y247, Y265, S262, S279/282, and S368 via multiple signaling pathways. Cell Commun Adhes 15:75–84

    Article  PubMed  CAS  Google Scholar 

  • Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC (2004) Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. J Biol Chem 279:54695–54701

    Article  PubMed  CAS  Google Scholar 

  • Swenson KI, Piwnica-Worms H, McNamee H, Paul DL (1990) Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp 60v-src-induced inhibition of communication. Cell Regul 1:989–1002

    PubMed  CAS  Google Scholar 

  • Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M (1998) Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 273:12725–12731

    Article  PubMed  CAS  Google Scholar 

  • Toyofuku T, Akamatsu Y, Zhang H, Kuzuya T, Tada M, Hori M (2001) c-Src regulates the interaction between connexin-43 and ZO-1 in cardiac myocytes. J Biol Chem 276:1780–1788

    Article  PubMed  CAS  Google Scholar 

  • Warn-Cramer BJ, Lampe PD, Kurata WE, Kanemitsu MY, Loo LW, Eckhart W et al (1996) Characterization of the mitogen-activated protein kinase phosphorylation sites on the connexin-43 gap junction protein. J Biol Chem 271:3779–3786

    Article  PubMed  CAS  Google Scholar 

  • Zang Q, Frankel P, Foster DA (1995) Selective activation of protein kinase C isoforms by v-Src. Cell Growth Differ 6:1367–1373

    PubMed  CAS  Google Scholar 

  • Zhou L, Kasperek EM, Nicholson BJ (1999) Dissection of the molecular basis of pp 60v-src induced gating of connexin 43 gap junction channels. J Cell Biol 144:1033–1045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Te authors are grateful to Mario Delmar and Steve Taffett for providing various Cx43 mutants, Elissavett Kardami for the PKC constructs, Marilyn Resh for provision of the v-src construct and Natalie Ahn for providing the CA-MEK1 construct. The authors’ thank Mary Merritt and Eileen Kasperek for technical assistance, Sandra A. Mathis for help in compiling the manuscript and Edward A. Kalmykov for assistance in preparing the figures for submission. This study was supported by National Institutes of Health grant CA048049 (to B. J. N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S.S., Xu, J. & Nicholson, B.J. Coregulation of Multiple Signaling Mechanisms in pp60v-Src-Induced Closure of Cx43 Gap Junction Channels. J Membrane Biol 245, 495–506 (2012). https://doi.org/10.1007/s00232-012-9500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9500-0

Keywords

Navigation