Skip to main content
Log in

Escherichia coli Membranes Depleted of SecYEG Elicit SecA-Dependent Ion-Channel Activity but Lose Signal Peptide Specificity

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have developed a sensitive method to detect the opening of SecA-dependent, protein-conducting channels in Xenopus oocytes. In this study, we determined the ionic current activities of the SecA-dependent channel from membrane vesicles depleted of SecYEG. We found that these SecYEG-depleted membranes produced SecA-dependent ionic currents in the oocytes, as did membranes containing SecYEG. However, reconstituted membranes depleted of SecYEG required higher concentrations of SecA to elicit ionic currents like those in membranes containing SecYEG. In contrast to membranes containing SecYEG, the proofreading capacity of signal peptides was lost for those membranes lacking SecYEG. These findings are consistent with loss of signal peptide specificity in channel activity from membranes of SecY suppressor or SecY plug domain mutants. The signal peptide specificity of the reconstituted membranes, like SecA-liposomes, can be restored by the addition of SecYEG proteoliposomes. On the other hand, the channel activity efficiency of reconstituted membranes was fully restored, while SecA-liposomes could only be partially enhanced by the addition of SecYEG, indicating that, in addition to SecYEG, other membrane proteins contribute to the efficiency of channel activity. The SecA-dependent channels in membranes that lacked SecYEG also lost ion selectivity to monovalent cations but retained selective permeability to large anions. Thus, the electrophysiological evidence presented here indicates that SecYEG is not obligatory for the channel activity of Escherichia coli membranes, as previously shown for protein translocation, and that SecYEG is important for maintenance of the efficiency and specificity of SecA-dependent channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bostina M, Mohsin B, Kuhlbrandt W, Collinson I (2005) Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J Mol Biol 352:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Cabelli RJ, Chen L, Tai PC, Oliver DB (1988) SecA protein is required for secretory protein translocation into E. coli membrane vesicles. Cell 55:683–692

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Tai PC, Briggs MS, Gierasch LM (1987) Protein translocation into Escherichia coli membrane vesicles is inhibited by functional synthetic signal peptides. J Biol Chem 262:1427–1429

    PubMed  CAS  Google Scholar 

  • Chen X, Xu H, Tai PC (1996) A significant fraction of functional SecA is permanently embedded in the membrane. SecA cycling on and off the membrane is not essential during protein translocation. J Biol Chem 271:29698–29706

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Tai PC, Sui SF (2007) The active ring-like structure of SecA revealed by electron crystallography: conformational change upon interaction with SecB. J Struct Biol 159:149–153

    Article  PubMed  CAS  Google Scholar 

  • Dalal K, Duong F (2009) The SecY complex forms a channel capable of ionic discrimination. EMBO Rep 10:762–768

    Article  PubMed  CAS  Google Scholar 

  • Dalal K, Bao H, Duong F (2010) Modulation of the SecY channel permeability by pore mutations and trivalent cations. Channels (Austin) 4:83–86

    Article  CAS  Google Scholar 

  • Emr SD, Hanley-Way S, Silhavy TJ (1981) Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23:79–88

    Article  PubMed  CAS  Google Scholar 

  • Fandl JP, Tai PC (1987) Biochemical evidence for the secY24 defect in Escherichia coli protein translocation and its suppression by soluble cytoplasmic factors. Proc Natl Acad Sci USA 84:7448–7452

    Article  PubMed  CAS  Google Scholar 

  • Fandl JP, Cabelli R, Oliver D, Tai PC (1988) SecA suppresses the temperature-sensitive SecY24 defect in protein translocation in Escherichia coli membrane vesicles. Proc Natl Acad Sci USA 85:8953–8957

    Article  PubMed  CAS  Google Scholar 

  • Hsieh Y-h, Zhang H, Lin B-r, Cui N, Na B, Yang H, Jiang C, Sui S-f, Tai PC (2011) SecA alone can promote protein translocation and ion channel activity. J Biol Chem 286:44702–44709

    Article  PubMed  CAS  Google Scholar 

  • Jilaveanu LB, Oliver D (2006) SecA dimer cross-linked at its subunit interface is functional for protein translocation. J Bacteriol 188:335–338

    Article  PubMed  CAS  Google Scholar 

  • Jilaveanu LB, Oliver DB (2007) In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA. J Biol Chem 282:4661–4668

    Article  PubMed  CAS  Google Scholar 

  • Jilaveanu LB, Zito CR, Oliver D (2005) Dimeric SecA is essential for protein translocation. Proc Natl Acad Sci USA 102:7511–7516

    Article  PubMed  CAS  Google Scholar 

  • Junne T, Schwede T, Goder V, Spiess M (2006) The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Biol Cell 17:4063–4068

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Rajapandi T, Oliver D (1994) SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 78:845–853

    Article  PubMed  CAS  Google Scholar 

  • Kusters R, Huijbregts R, de Kruijff B (1992) Elevated cytosolic concentrations of SecA compensate for a protein translocation defect in Escherichia coli cells with reduced levels of negatively charged phospholipids. FEBS Lett 308:97–100

    Article  PubMed  CAS  Google Scholar 

  • Li W, Schulman S, Boyd D, Erlandson K, Beckwith J, Rapoport TA (2007) The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 26:511–521

    Article  PubMed  CAS  Google Scholar 

  • Lin BR, Gierasch LM, Jiang C, Tai PC (2006) Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels. J Membr Biol 214:103–113

    Article  PubMed  CAS  Google Scholar 

  • Maillard AP, Lalani S, Silva F, Belin D, Duong F (2007) Deregulation of the SecYEG translocation channel upon removal of the plug domain. J Biol Chem 282:1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Manting EH, Driessen AJ (2000) Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol 37:226–238

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Wang X, Chen F, Wang R, Rojas A, Shi Y, Piao H, Jiang C (2004) Molecular basis for the inhibition of G protein-coupled inward rectifier K+ channels by protein kinase C. Proc Natl Acad Sci USA 101:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Ito K (2001) An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc Natl Acad Sci USA 98:5128–5133

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta CV, Blobel G (1990) Assembly of translocation-competent proteoliposomes from detergent-solubilized rough microsomes. Cell 60:259–269

    Article  PubMed  CAS  Google Scholar 

  • Oliver DB, Beckwith J (1982a) Identification of a new gene (secA) and gene product involved in the secretion of envelope proteins in Escherichia coli. J Bacteriol 150:686–691

    PubMed  CAS  Google Scholar 

  • Oliver DB, Beckwith J (1982b) Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30:311–319

    Article  PubMed  CAS  Google Scholar 

  • Osborne RS, Silhavy TJ (1993) PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J 12:3391–3398

    PubMed  CAS  Google Scholar 

  • Park E, Rapoport TA (2011) Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473:239–242

    Article  PubMed  CAS  Google Scholar 

  • Ruiz N, Silhavy TJ (2005) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126

    Article  PubMed  CAS  Google Scholar 

  • Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S, Rapoport TA, Pohl P (2007) Determining the conductance of the SecY protein translocation channel for small molecules. Mol Cell 26:501–509

    Article  PubMed  CAS  Google Scholar 

  • Schiebel E, Wickner W (1992) Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. J Biol Chem 267:7505–7510

    PubMed  CAS  Google Scholar 

  • Silhavy TJ, Beckwith J (1983) Isolation and characterization of mutants of Escherichia coli K12 affected in protein localization. Methods Enzymol 97:11–40

    Article  PubMed  CAS  Google Scholar 

  • Tai PC, Tian G, Xu H, Lian JP, Yu JN (1991) In vitro protein translocation into Escherichia coli inverted membrane vesicles. Methods Cell Biol 34:167–187

    Article  PubMed  CAS  Google Scholar 

  • Tam PC, Maillard AP, Chan KK, Duong F (2005) Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J 24:3380–3388

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  PubMed  Google Scholar 

  • Veenendaal AK, van der Does C, Driessen AJ (2004) The protein-conducting channel SecYEG. Biochim Biophys Acta 1694:81–95

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF (2003) Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci USA 100:4221–4226

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Na B, Yang H, Tai PC (2008) Additional in vitro and in vivo evidence for SecA functioning as dimers in the membrane: dissociation into monomers is not essential for protein translocation in Escherichia coli. J Bacteriol 190:1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Nicchitta CV, Blobel G (1990) Reconstitution of protein translocation from detergent-solubilized Escherichia coli inverted vesicles: PrlA protein-deficient vesicles efficiently translocate precursor proteins. Proc Natl Acad Sci USA 87:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Cui N, Yang Z, Wu J, Giwa LR, Abdulkadir L, Sharma P, Jiang C (2001) Direct activation of cloned KATP channels by intracellular acidosis. J Biol Chem 276:12898–12902

    Article  PubMed  CAS  Google Scholar 

  • Yang YB, Lian J, Tai PC (1997a) Differential translocation of protein precursors across SecY-deficient membranes of Escherichia coli: SecY is not obligatorily required for translocation of certain secretory proteins in vitro. J Bacteriol 179:7386–7393

    PubMed  CAS  Google Scholar 

  • Yang YB, Yu N, Tai PC (1997b) SecE-depleted membranes of Escherichia coli are active. SecE is not obligatorily required for the in vitro translocation of certain protein precursors. J Biol Chem 272:13660–13665

    Article  PubMed  CAS  Google Scholar 

  • Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE (2003) YidC is strictly required for membrane insertion of subunits a and c of the F1F0ATP synthase and SecE of the SecYEG translocase. Biochemistry 42:10537–10544

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Kolter R, Tai PC (1996) Processing of colicin V-1, a secretable marker protein of a bacterial ATP binding cassette export system, requires membrane integrity, energy, and cytosolic factors. J Biol Chem 271:28057–28063

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Houghton for the comments and edits on the manuscript. We also thank L. Gierasch for signal peptides and comments and C. Murphy, J. Beckwith, T. Silhavy and D. Oliver for strains and plasmids. We thank X. Chen for purified proOmpA and H. Yang for purified SecA. SecYEG membranes were a gift of Dr. You in this lab. This work was supported in part by NIH research grants GM034766 (to P. C. T.) and equipment facility grants by Georgia Research Alliance. B.-R. L. and Y.-H. H. were fellows of the Molecular Basis of Disease Program at GSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phang C. Tai.

Additional information

B.-R. Lin and Y.-H. Hsieh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, BR., Hsieh, YH., Jiang, C. et al. Escherichia coli Membranes Depleted of SecYEG Elicit SecA-Dependent Ion-Channel Activity but Lose Signal Peptide Specificity. J Membrane Biol 245, 747–757 (2012). https://doi.org/10.1007/s00232-012-9477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9477-8

Keywords

Navigation