Skip to main content
Log in

Inducible Coexpression of Connexin37 or Connexin40 with Connexin43 Selectively Affects Intercellular Molecular Transfer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40. Immmunoblotting showed a ponasterone dose-dependent induction of Cx37 or Cx40 while constant levels of Cx43 were maintained. The coexpressed connexins colocalized at appositional membranes. Double whole-cell patch clamp recordings showed no significant change in total junctional conductances in cells treated with 0, 0.5, or 4 μM ponasterone; however, they did show a diversity of unitary channel sizes consistent with the induced connexin expression. In cells with induced expression of either Cx40 or Cx37, intercellular transfer of microinjected Lucifer yellow was reduced, but transfer of NBD-TMA (2-(4-nitro-2,1,3-benzoxadiol-7-yl)[aminoethyl]trimethylammonium) was not affected. In cocultures containing uninduced EcR cells together with cells induced to coexpress Cx37 or Cx40, Lucifer yellow transfer was observed only between the cells expressing Cx43 alone. These data show that induced expression of either Cx37 or Cx40 in Cx43-expressing cells can selectively alter the intercellular exchange of some molecules without affecting the transfer of others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beblo DA, Wang HZ, Beyer EC, Westphale EM, Veenstra RD (1995) Unique conductance, gating, and selective permeability properties of gap junction channels formed by connexin40. Circ Res 77:813–822

    Article  PubMed  CAS  Google Scholar 

  • Bednarczyk D, Mash EA, Aavula BR, Wright SH (2000) NBD-TMA: a novel fluorescent substrate of the peritubular organic cation transporter of renal proximal tubules. Pflugers Arch 440:184–192

    PubMed  CAS  Google Scholar 

  • Berthoud VM, Montegna EA, Atal N, Aithal NH, Brink PR, Beyer EC (2001) Heteromeric connexons formed by the lens connexins, connexin43 and connexin56. Eur J Cell Biol 80:11–19

    Article  PubMed  CAS  Google Scholar 

  • Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC (1997) Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol (Cell Physiol) 273:C1386–C1396

    CAS  Google Scholar 

  • Brisset AC, Isakson BE, Kwak BR (2009) Connexins in vascular physiology and pathology. Antioxid Redox Signal 11:267–282

    Article  PubMed  CAS  Google Scholar 

  • Burt JM, Steele TD (2003) Selective effect of PDGF on connexin43 versus connexin40 comprised gap junction channels. Cell Commun Adhes 10:287–291

    PubMed  CAS  Google Scholar 

  • Burt JM, Fletcher AM, Steele TD, Wu Y, Cottrell GT, Kurjiaka DT (2001) Alteration of Cx43:Cx40 expression ratio in A7r5 cells. Am J Physiol Cell Physiol 280:C500–C508

    PubMed  CAS  Google Scholar 

  • Burt JM, Nelson TK, Simon A, Fang JS (2008) Connexin 37 profoundly slows cell cycle progression in rat insulinoma cells. Am J Physiol Cell Physiol 296:C1103–C1112

    Article  Google Scholar 

  • Chang CJ, Wu LS, Hsu LA, Chang GJ, Chen CF, Yeh HI, Ko YS (2010) Differential endothelial gap junction expression in venous vessels exposed to different hemodynamics. J Histochem Cytochem 58:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711:197–207

    Article  PubMed  CAS  Google Scholar 

  • Cottrell GT, Burt JM (2001) Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am J Physiol Cell Physiol 281:C1559–C1567

    PubMed  CAS  Google Scholar 

  • Cottrell GT, Burt JM (2005) Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease. Biochim Biophys Acta 1711:126–141

    Article  PubMed  CAS  Google Scholar 

  • Cottrell GT, Wu Y, Burt JM (2002) Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol Cell Physiol 282:C1469–C1482

    PubMed  CAS  Google Scholar 

  • Delorme B, Dahl E, Jarry-Guichard T, Briand JP, Willecke K, Gros D, Theveniau-Ruissy M (1997) Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res 81:423–437

    Article  PubMed  CAS  Google Scholar 

  • Derouette JP, Desplantez T, Wong CW, Roth I, Kwak BR, Weingart R (2009) Functional differences between human Cx37 polymorphic hemichannels. J Mol Cell Cardiol 46:499–507

    Article  PubMed  CAS  Google Scholar 

  • Ek-Vitorin JF, Burt JM (2005) Quantification of gap junction selectivity. Am J Physiol Cell Physiol 289:C1535–C1546

    Article  PubMed  CAS  Google Scholar 

  • Gabriels JE, Paul DL (1998) Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83:636–643

    Article  PubMed  CAS  Google Scholar 

  • Gemel J, Valiunas V, Brink PR, Beyer EC (2004) Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells. J Cell Sci 117:2469–2480

    Article  PubMed  CAS  Google Scholar 

  • Gemel J, Lin X, Veenstra RD, Beyer EC (2006) N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26. J Cell Sci 119:2258–2268

    Article  PubMed  CAS  Google Scholar 

  • Gemel J, Lin X, Collins R, Veenstra RD, Beyer EC (2008) Cx30.2 can form heteromeric gap junction channels with other cardiac connexins. Biochem Biophys Res Commun 369:388–394

    Article  PubMed  CAS  Google Scholar 

  • Good ME, Nelson TK, Simon AM, Burt JM (2011) A functional channel is necessary for growth suppression by Cx37. J Cell Sci 124:2448–2456

    Article  PubMed  CAS  Google Scholar 

  • Haefliger JA, Nicod P, Meda P (2004) Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62:345–356

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  • He DS, Jiang JX, Taffet SM, Burt JM (1999) Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA 96:6495–6500

    Article  PubMed  CAS  Google Scholar 

  • Heyman NS, Burt JM (2008) Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys J 94:840–854

    Article  PubMed  CAS  Google Scholar 

  • Heyman NS, Kurjiaka DT, Ek Vitorin JF, Burt JM (2009) Regulation of gap junctional charge selectivity in cells coexpressing connexin 40 and connexin 43. Am J Physiol Heart Circ Physiol 297:H450–H459

    Article  PubMed  CAS  Google Scholar 

  • Johnstone S, Isakson B, Locke D (2009) Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278:69–118

    Article  PubMed  Google Scholar 

  • Kumari SS, Varadaraj K, Valiunas V, Ramanan SV, Christensen EA, Beyer EC, Brink PR (2000) Functional expression and biophysical properties of polymorphic variants of the human gap junction protein connexin37. Biochem Biophys Res Commun 274:216–224

    Article  PubMed  CAS  Google Scholar 

  • Kwong KF, Schuessler RB, Green KG, Laing JG, Beyer EC, Boineau JP, Saffitz JE (1998) Differential expression of gap junction proteins in the canine sinus node. Circ Res 82:604–612

    Article  PubMed  CAS  Google Scholar 

  • Laing JG, Beyer EC (1995) The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway. J Biol Chem 270:26399–26403

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Gemel J, Glass A, Zemlin CW, Beyer EC, Veenstra RD (2010) Connexin40 and connexin43 determine gating properties of atrial gap junction channels. J Mol Cell Cardiol 48:238–245

    Article  PubMed  CAS  Google Scholar 

  • Martinez AD, Hayrapetyan V, Moreno AP, Beyer EC (2002) Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res 90:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Morel S, Burnier L, Roatti A, Chassot A, Roth I, Sutter E, Galan K, Pfenniger A, Chanson M, Kwak BR (2010) Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation. Carcinogenesis 31:1922–1931

    Article  PubMed  CAS  Google Scholar 

  • Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357–1374

    Article  PubMed  CAS  Google Scholar 

  • Musil LS, Cunningham BA, Edelman GM, Goodenough DA (1990) Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol 111:2077–2088

    Article  PubMed  CAS  Google Scholar 

  • Rackauskas M, Kreuzberg MM, Pranevicius M, Willecke K, Verselis VK, Bukauskas FF (2007) Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys J 92:1952–1965

    Article  PubMed  CAS  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    PubMed  CAS  Google Scholar 

  • Seul KH, Kang KY, Lee KS, Kim SH, Beyer EC (2004) Adenoviral delivery of human connexin37 induces endothelial cell death through apoptosis. Biochem Biophys Res Commun 319:1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V, Weingart R, Brink PR (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86:E42–E49

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V, Gemel J, Brink PR, Beyer EC (2001) Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol Heart Circ Physiol 281:H1675–H1689

    PubMed  CAS  Google Scholar 

  • Valiunas V, Beyer EC, Brink PR (2002) Cardiac gap junction channels show quantitative differences in selectivity. Circ Res 91:104–111

    Article  PubMed  CAS  Google Scholar 

  • Veenstra RD, Wang HZ, Beyer EC, Ramanan SV, Brink PR (1994) Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J 66:1915–1928

    Article  PubMed  CAS  Google Scholar 

  • Veenstra RD, Wang HZ, Beblo DA, Chilton MG, Harris AL, Beyer EC, Brink P (1995) Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ Res 77:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973

    Article  PubMed  CAS  Google Scholar 

  • Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954

    Article  PubMed  CAS  Google Scholar 

  • Yeh HI, Chang HM, Lu WW, Lee YN, Ko YS, Severs NJ, Tsai CH (2000) Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. J Histochem Cytochem 48:1377–1389

    Article  PubMed  CAS  Google Scholar 

  • Zhong G, Mantel PL, Jiang X, Jarry-Guichard T, Gros D, Labarrere C, Moreno AP (2003) LacSwitch II regulation of connexin43 cDNA expression enables gap-junction single-channel analysis. Biotechniques 34:1034–1046

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants HL59199 (ECB), 5R01HL058732 (JMB), and 5R01HL077675 (JMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemel, J., Nelson, T.K., Burt, J.M. et al. Inducible Coexpression of Connexin37 or Connexin40 with Connexin43 Selectively Affects Intercellular Molecular Transfer. J Membrane Biol 245, 231–241 (2012). https://doi.org/10.1007/s00232-012-9444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9444-4

Keywords

Navigation